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Abstract 

The blood–brain barrier (BBB) plays a key role in regulating transport into and out of the brain. With increasing inter-
est in the role of the BBB in health and disease, there have been significant advances in the development of in vitro 
models. The value of these models to the research community is critically dependent on recapitulating characteristics 
of the BBB in humans or animal models. However, benchmarking in vitro models is surprisingly difficult since much 
of our knowledge of the structure and function of the BBB comes from in vitro studies. Here we describe a set of 
parameters that we consider a starting point for benchmarking and validation. These parameters are associated with 
structure (ultrastructure, wall shear stress, geometry), microenvironment (basement membrane and extracellular 
matrix), barrier function (transendothelial electrical resistance, permeability, efflux transport), cell function (expression 
of BBB markers, turnover), and co-culture with other cell types (astrocytes and pericytes). In suggesting benchmarks, 
we rely primarily on imaging or direct measurements in humans and animal models.
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Introduction
Recent advances in stem cell technology, tissue engineer-
ing, and microfluidics have led to rapid advances in the 
complexity of in vitro models of the blood–brain barrier 
(BBB). Stem cell technology provides a reliable source of 
human, brain-specific cells: iPSC-derived human brain 
microvascular endothelial cells (dhBMECs) exhibit many 
of the hallmarks of human BMECs [1–29], a long-stand-
ing problem in developing BBB models [30–32]. Addi-
tionally, protocols for iPSC-derived astrocytes, pericytes, 
microglia and neurons have been developed to facili-
tate modeling of the neurovascular unit [33]. Similarly, 
advances in tissue engineering and microfluidics provide 
the tools for organization of perfusable microvessels or 
microvascular networks [34, 35]. Diverse BBB-on-a-chip 
models have emerged over the last 5 years, they can gen-
erally be classified as: (1) two-dimensional microfluidic 

models, (2) hybrid microfluidic models, (3) three-dimen-
sional templated models or (4) self-organization models. 
Two-dimensional microfluidic models incorporating a 
permeable membrane (resembling that of a traditional 
Transwell® assay) are extremely valuable for applica-
tions such as drug screening or measures of electrical 
resistance, however, these models do not recapitulate 
many aspects of physiological BBB function [36–39]. 
Hybrid microfluidic models capture more complexity but 
lack homogenous cell-ECM interactions and cylindri-
cal geometry and are thus not able to respond to vaso-
dilation/constriction [40, 41]. Templating approaches 
support generation of singular cylindrical microves-
sels embedded within an extracellular matrix that can 
be integrated into a flow system for live-cell imaging 
[23, 24, 42–44]. Lastly, self-organization approaches 
that mimic vasculogenesis and/or angiogenesis have 
emerged to generate multicellular models of brain micro-
vascular networks [45, 46]. Since animal models do not 
always recapitulate human physiology or disease [47, 48], 
in  vitro models can provide an important link between 
human physiology and animal models.
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The value of BBB models in basic and translational 
research is dependent on the ability to recapitulate 
in  vivo and ex  vivo studies. The fidelity of the model is 
usually dictated by the purpose and the processes under 
study. More reductive models will naturally recapitulate 
fewer characteristics of the BBB, while more complex 
models attempt to recapitulate more characteristics but 
are usually lower throughput. In all cases, benchmark-
ing to in vivo studies is key to establishing physiological 
relevance.

Benchmarking is surprisingly challenging, in large 
part because much of our knowledge about BBB struc-
ture and function is derived from in  vitro studies. Here 
we describe 12 design criteria for tissue engineering the 
human BBB. This is not intended to be a complete check-
list of benchmarks for model validation, but a limited 
set of parameters associated with structure (ultrastruc-
ture, wall shear stress, geometry), microenvironment 
(basement membrane and extracellular matrix), barrier 
function [transendothelial electrical resistance (TEER), 
permeability, efflux transport], cell function (expression 
of BBB markers, turnover), and co-culture with other cell 
types (astrocytes and pericytes). Depending on the pur-
pose of the model, the specific benchmarks may vary and 
may not include all those listed here. Wherever possible, 
benchmarks are suggested based on imaging or direct 
measurement in humans or animal models.

Benchmarks for blood–brain barrier models
Ultrastructure
To power the adult human brain, nutrients are supplied 
to the 100 billion neurons via a 600 km network of cap-
illaries and microvessels [49]. Since the brain does not 
have significant capacity to store metabolic nutrients, 
cerebral blood flow is proportional to cerebral metabolic 
rate [50], and the cell bodies of neurons are typically 
10–20 µm from the nearest capillary [51, 52]. Capillaries 
are supplied by arterioles and drained by post-capillary 
venules which are up to 100–200 µm in diameter. Capil-
laries in the human brain are 8–10 µm in diameter, with 
50–100 µm long segments between bifurcations (Fig. 1A, 
B) [53–56]. In contrast, the smallest capillaries in the 
mouse brain are around 3 µm in diameter, and in the rat 
brain are around 4  µm in diameter [57]. In capillaries, 
BMECs wrap around to form junctions with themselves 
and their upstream and downstream neighbors (Fig. 1C, 
D). The spatial arrangement of pericytes and astrocytes 
are described in subsequent sections. Post-capillary ven-
ules (PCVs) are characterized by a perivascular space 
with limited supporting cells [58–60]. Evidence suggests 
that extravasation of leukocytes, tumor cells, and para-
sites occurs preferentially at PCVs [60–66].

Electron microscopy (EM) images of the ultrastruc-
ture of microvessels and capillaries in rodent brains show 
BMECs are relatively flat and have considerable cell–cell 
overlap (typically 0.5 µm or more) (Fig. 1C), likely asso-
ciated with tight junction formation [67–71]. In EM 
images of the overlapping regions using freeze-fracture, 
tight junctions appear as a network of contact points or 
particles between the extracellular domains of claudin-5, 
occludin and other transmembrane proteins on opposing 
membranes (Fig. 1E) [72, 73].

In establishing BBB models, desired geometry is dic-
tated by the diameter and location of the target microves-
sel (arteriole, capillary, or venule), which also determines 
other aspects of the local microenvironment (discussed 
in subsequent sections).

Wall shear stress
Wall shear stress is thought to regulate many processes 
associated with the endothelium [76–79], however, much 
of our knowledge comes from in vitro experiments where 
the characteristics of the BMECs and the 2D geometry 
may influence results. Nonetheless, shear stress can play 
a role in mediating processes such as leukocyte adhe-
sion, where the probability of capture is higher in post-
capillary venules where the shear stress is relatively low. 
In 3D models, wall shear stress can be determined from 
particle image velocimetry (PIV) via analysis of fluores-
cent beads in the perfusion media or by calculating flow 
rate. These methods supports determination of the flow 
profile and wall shear stress within a microfluidic device 
or tissue-engineered microvessel [76, 77, 80]. Wall shear 
stress can also be estimated from the velocity of red 
blood cells (RBCs) which enables correlation with in vivo 
experiments.

In the arterial tree, the wall shear stress is 10–70 dyne 
cm−2 depending on vessel diameter [81, 82]. Fluctua-
tions in blood pressure during the cardiac cycle, typically 
oscillating between 80 and 120 mmHg, lead to pulsatile 
arterial blood flow [83]. These fluctuations are damped 
as the vessel diameter decreases, resulting in near con-
stant blood flow in small arterioles, capillaries and ven-
ules. RBC velocity in brain capillaries in rodent models 
is in the range of 0.5–2.0  mm  s−1 [84–91], correspond-
ing to a wall shear stress of about 20–40 dyne cm−2 [92]. 
The large range of shear stress in capillaries is in part due 
to neurovascular coupling and the wide range of meta-
bolic demands [93–98]. In mouse post-capillary venules 
(PCVs), the flow is highly damped with an average RBC 
velocity of 5–7 mm s−1 corresponding to an average wall 
shear stress of 1–4 dyne cm−2 [84, 92, 99–101]. Eryth-
rocyte velocity was used to estimate a mean wall shear 
stress of 1–6 dyne cm−2 in capillaries and PCVs ranging 
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in size from 4 to 20 µm in the human bulbar conjunctiva 
[99].

In benchmarking in  vitro models, the flow system 
should be designed to achieve the average wall shear 
stress of the microvessel type (arteriole, capillary, or ven-
ule). For the case of arterioles and capillaries, recapitu-
lating pulsatile flow may also be important as it has been 
shown to influence barrier function, solute transport 
along the endothelium and inflammation within in vitro 
BBB models [44, 79, 102].

Cylindrical geometry
The cylindrical geometry of microvessels imposes two 
important constraints on BMECs. First, cells experi-
ence curvature, which is inversely related to diameter, 
and plays a role in BMEC behavior. Human BMECs in 
confluent monolayers resist elongation and alignment 
due to curvature, whereas other ECs elongate and align 
to minimize the effects of curvature [103]. This may 

represent an evolutionary advantage by reducing the 
total length of cell–cell junctions per unit length of ves-
sel, thereby reducing paracellular transport. Second, 
the cylindrical geometry means that there is a finite 
number of cells around the perimeter of a microves-
sel. In capillaries where BMECs wrap around and form 
tight junctions with themselves, there is one cell around 
the perimeter. In microvessels there are relatively few 
cells around the perimeter and hence cell–cell inter-
actions and processes such as motility are extremely 
limited in comparison to 2D monolayers [24, 103]. 
Whether cylindrical geometry and shear stress are crit-
ical to achieve physiological barrier function is not well 
understood. However, permeabilities for Lucifer yellow 
in iPSC-derived human BMEC microvessels and in the 
Transwell® assay are similar [24], suggesting that physi-
ological geometry and shear stress are not prerequisites 
for tight junction formation.

Fig. 1  EM images of brain microvessels. A Scanning electron micrograph of a replica of cortical capillaries in the frontal lobe of the human brain 
(from [74]). B Scanning electron micrograph of a replica of a cortical capillary network in the human brain showing the imprint of endothelial 
cell nuclei (2) and a pericyte with a “bump on a log” morphology (3) (from [74]). C Cross-section of a capillary in the frontoparietal cortex of a 
Wistar–Kyoto rat showing an endothelial cell wrapping around to form a tight junction with itself, along with associated pericytes and astrocyte 
end-feet (from [70]). D Transmission electron microscope cross-section of a cortical capillary in a rat. A systemically injected lanthanum compound 
penetrated the inter-endothelial space up to the tight junction (from [71]). E Freeze-fracture replicas of cerebral endothelial cell tight junctions. In 
capillary preparations, most P-face strands are occupied with particles (from [75])
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Basement membrane
The basement membrane surrounding the endothelial 
cells in the cerebrovasculature consists of fibronectin, 
laminin, collagen type IV, heparan sulfate proteoglycans 
(HSPG) such as perlecan, and nidogens/entactins [57, 
104–108]. The thickness (20–200  nm) and composition 
of the basement membrane is dependent on the location 
in the cerebrovasculature. In arteries and arterioles the 
presence of perivascular smooth muscle cells results in 
an inner endothelial basement membrane and an outer 
the parenchymal basement membrane, in which distinct 
laminin isoforms are present [109]. In capillaries, the 
basement membrane is relatively thin and occupies the 
space between the endothelial cells and astrocyte end-
feet, and surrounds pericytes (see Fig.  1C, D) [71, 110]. 
In PCVs, the endothelial and parenchymal basement 
membrane are separated by the perivascular space. The 
basement membrane in capillaries is typically charac-
terized by the presence of laminin α4 and α5. In tissue-
engineered models, basement membrane proteins can 
be deposited before cell seeding to promote adhesion of 
cells [23]; cells will then modify their local environment 
as they become established and secrete additional base-
ment membrane proteins.

Extracellular matrix (ECM)
Selection of an extracellular matrix material is one of 
the major challenges in developing tissue-engineered 
models of the BBB since 70–85% of the brain volume is 
cells [111]. The extracellular space consists of a hyalu-
ronic acid-based extracellular matrix and brain intersti-
tial fluid. The extracellular space is characterized by an 
interconnected network of pores, 50–100 nm in size that 
serve as a reservoir for ions and a pathway for transport 
[111–114]. The extracellular volume fluctuates during 
normal brain function and decreases during develop-
ment and aging [111, 115]. The extracellular matrix in the 
interstitial space is composed of hyaluronic acid (HA), 

lecticans (aggrecan, versican, neurocan, and brevican), 
hyaluronan and proteoglycan link proteins (HAPLNs), 
and tenascins [116, 117]. Common ECM proteins such 
as collagen type I and fibronectin are not present in the 
healthy brain [118]. As a result, tissue engineered mod-
els of the BBB must either incorporate large numbers of 
neurons and astrocytes, as well as other glial cells, or use 
a passive matrix material that provides structural support 
for BBB microvessels (see “Astrocyte” section for more 
details).

Expression of BBB markers
The expression of tight junctions (TJs) and transport sys-
tems are widely used to characterize in vitro BBB models 
[32]. Tight junctions between adjacent BMECs minimize 
paracellular permeability, maintain cell membrane polar-
ization, and facilitate intracellular signaling [119]. Tight 
junctions are comprised of transmembrane proteins (i.e. 
occludin, claudins, junctional adhesion molecules) that 
interact with cytoplasmic scaffolding proteins (i.e. zona 
occludens), the actin cytoskeleton, and associated sign-
aling proteins [120]. While many cell types express tight 
junctions, claudin-5 is endothelial-cell specific and par-
ticularly enriched in the brain cerebrovasculature com-
pared to other TJ components [121, 122]. Localization 
of claudin-5, occludin, junctional adhesion molecules, 
and zona occludens-1 are commonly used to validate 
cell sources for in vitro models [1, 2, 4, 19, 32, 123, 124]. 
Immunocytochemistry can be used to visualize these 
proteins at cell–cell junctions; importantly, TJ strands 
should be crisp (Fig. 2A, B), while under pathological or 
non-physiological conditions, they are non-continuous 
or show intracellular localization [7, 12, 14, 125].

Additionally, the brain endothelium is enriched in 
nutrient and efflux transporter systems. In the brain, 
Glucose transporter 1 (GLUT1) is highly expressed only 
in endothelial cells, and hence is a common biomarker 
for brain microvessels and capillaries (Fig.  2C). GLUT1 

Fig. 2  Confocal images of key BBB markers stained in human cerebral cortex at mid-gestation tissue sections (from [126]). A, B Occludin 
and claudin-5 display clear junctional distributions with individual endothelial cells wrapping around to form junctions with themselves and 
neighboring cells. C, D GLUT-1 and P-gp, critical nutrient and efflux transporters, display uniform expression
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expression is critical to facilitate transport of glucose to 
meet the high metabolic demand of the brain. The P-gly-
coprotein (P-gp) efflux pump is one of several multi-spec-
trum efflux transporters present in brain endothelium 
and is predominantly localized to the luminal membrane. 
Expression of the P-gp pump verifies the potential for 
efflux, an important component of the BBB barrier func-
tion (see “Efflux transport” section for more details).

A minimum set of criteria for staining in  vitro BBB 
models is: Continuous TJ proteins (i.e. claudin-5, occlu-
din, and zona occludens-1) localized to cell–cell junc-
tions, and uniform expression of nutrient and efflux 
transporters.

Transendothelial electrical resistance (TEER)
TEER measures the ionic resistance of cell monolayers. 
The equivalent circuit for endothelial and epithelial mon-
olayers has two components, the resistance associated 
with paracellular ion transport and the resistance asso-
ciated with ion transport across the apical and luminal 
cell membranes (Fig. 3) [57]. For the limiting case where 
paracellular resistance is large, implying negligible para-
cellular permeability, then TEER values are determined 
by the conductance of the cell membranes. TEER is dif-
ficult to measure in tissue-engineered microvessels since 
there is usually a low resistance pathway between the 
lumen and surrounding matrix at the entry and exit. One 
solution to this problem is to measure both TEER and the 

permeability of a small molecule (e.g. Lucifer yellow) in 
a transwell assay, and the permeability of the small mol-
ecule in microvessels. If the small molecule permeability 
is the same in 2D and 3D, and the TEER value in 2D is in 
the physiological range, then this implies that the tissue 
engineered model has physiological TEER. However, this 
method should be used with caution: although TEER is 
approximately inversely related to permeability, the rela-
tionship is non-linear and dependent on the endothelial 
cell type and solute [5, 127]. For example, iPSC-derived 
hBMECs with TEER above 900 Ω cm2 display a constant 
IgG permeability, indicating this critical cutoff for physi-
ological studies of large molecule transport [5].

Measurements in pial and arterial microvessels in rats 
and pial microvessels in frogs have shown TEER values 
in the range 1500–6000 Ω cm2 [128–130]. Calculations 
based on the conductance and density of ion channels 
predict BMEC electrical resistance of 4000–8000 Ω cm2 
[128, 131]. In contrast, TEER for primary and immor-
talized BMECs in monoculture are typically ≤ 200 Ω 
cm2 [132–134]. The TEER of iPSC-derived BMECs are 
typically ≥ 1500 Ω cm−2, within the range obtained for 
microvessels in animal models [1, 2, 4, 5]. An important 
implication of the observation that physiological TEER is 
achieved with iPSC-derived BMECs in 2D, is that cylin-
drical geometry, shear flow and co-culture are not essen-
tial for the tight junction formation.

Permeability
Tight junctions effectively block paracellular transport 
and hence small molecules cross the normal BBB either 
by passive diffusion or by carrier- or receptor-mediated 
transport. Downregulation of tight junctions can lead to 
disruption of the BBB and the onset of paracellular trans-
port. Since many primary and immortalized cell lines do 
not exhibit physiological TEER, it is likely that the per-
meability values measured in Transwell® experiments 
utilizing these cells reflect contributions from both para-
cellular and transcellular transport pathways.

Defining quantitative benchmarks for barrier func-
tion is surprisingly difficult, and almost all quantitative 
in  vivo data comes from animal models. The discovery 
of the BBB dates back to the observation by Paul Ehrlich 
that systemically injected Trypan blue stains all organs 
except the brain (Fig. 4A) [135, 136]. These experiments 
have subsequently been repeated with other dyes, such 
as Evans blue (961 Da) in many animal models (Fig. 4B, 
C) [135]. These dyes do not appreciably enter the brain as 
they are bound to albumin in circulation (67 kDa, ~ 10 nm 
in size). The in  vivo permeability of the BBB to various 
solutes has been performed using various experimental 
protocols in animal models. The permeability of Lucifer 
yellow in 15 µm pial post-capillary venules in a rat model 

Fig. 3  Schematic illustration of the equivalent circuit for the 
impedance of a confluent monolayer. Rpara—resistance associated 
with paracellular ion transport, Rm—resistance associated with ion 
transport across the cell membrane (i.e. through ion channels), 
Cm—capacitance associated with the cell membranes, Rs—resistance 
associated with the media. If Rpara > Rm then paracellular ion transport 
is negligible and TEER values are determined by the resistance (1/
conductance) of the endothelial cell membranes
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was reported to be 1–2 × 10−7 cm s−1 [137]. In zebrafish, 
where the cerebrovasculature is visible without surgi-
cal manipulation, 10  kDa dextran was not observed to 
enter the brain parenchyma [138]. However, in a series of 
experiments using multiphoton microscopy in 20–40 µm 
pial post-capillary venules in a rat model [139, 140], the 
permeability of sodium fluorescein (332  Da) was deter-
mined to be 1.46 × 10−6 cm s−1 and the permeability of 
10 kDa dextran was 3.1 ±  1.3 × 10−7 cm s−1. While the 
permeability of the larger 10  kDa dextran is fivefold 
smaller than fluorescein, it is close to the permeability 
of the small molecule Lucifer yellow as described above 
[137]. Thus, there are discrepancies across in vivo studies 
in animal models that make it difficult to provide defini-
tive values for benchmarking. Therefore, we provisionally 
suggest that for tissue-engineered models: (1) the per-
meability of Lucifer yellow should be ≤ 2 × 10−7 cm s−1, 
and (2) the permeability of 10 kDa dextran, solutes that 
bind to albumin, or other large molecules (e.g. albumin) 
should be negligible (≤ 1 × 10−7 cm s−1).

In vitro models of the BBB generally fail to achieve 
physiological permeability. In one of the very few stud-
ies of tissue-engineered BBB microvessels incorporat-
ing primary human BMECs, astrocytes, and pericytes, 
the permeability of 3  kDa dextran was reported to be 
2–4 × 10−6 cm s−1 [43]. As acknowledged by the authors, 
this high permeability for a large molecule does not reca-
pitulate BBB barrier function and is likely associated with 

low TEER values (40–50 Ω cm2) of the primary BMECs. 
In iPSC-derived human BMEC microvessels (with no 
other cell types), the permeability of Lucifer yellow was 
reported to be 2–3 ×  10−7 cm  s−1 (Fig.  4E) [24], close 
to values reported in a rat model [137]. In addition, the 
permeability of 10 kDa fluorescently labeled dextran was 
below the detection limit (Fig. 4F) [24]. TEER values for 
the iPSC-derived hBMECs were > 1500 Ω cm2, in the 
range thought to be physiological. Taken together these 
results further support the hypothesis that physiological 
TEER values are associated with negligible paracellular 
transport and permeabilities that are related to transcel-
lular transport alone. A recent report of a self-organized 
human BBB microvascular network reported 10 kDa dex-
tran permeability of ~ 2 × 10−7 cm s−1, matching values 
reported from multiphoton studies [45].

Efflux transport
To regulate entry of small molecules into the brain by 
passive transport, BMECs express an array of efflux 
transporters, the most well-known of which are the 
P-glycoprotein (P-gp) and Breast Cancer Resistant Pro-
tein (BCRP) pumps [144]. These pumps are generally 
polarized on the luminal surface of BMECs and are capa-
ble of effluxing a wide range of chemically diverse com-
pounds [145].

A common functional method to confirm the presence 
of efflux pumps is to perform permeability experiments 

Fig. 4  Blood–brain barrier permeability. A Guinea pig embryo injected with trypan blue demonstrates restriction of dye entry into CNS (from 
[135]). B Brain of a rat with chronic hypertension showing areas of Evans blue extravasation in the boundary zone areas (from [141]). C Adult 
mice injected with fluorescently-labeled dextrans (10 and 2000 kDa) and imaged with two-photon microscopy show lack of significant dye 
extravasation over 1 h (from [142]). D Positron emission tomography (PET) imaging of radiolabeled verapamil in mouse and human brains with and 
without p-glycoprotein inhibition using tariquidar. The color bar indicates brain-to-plasma ratio, a measure of drug penetration (from [143]). E, F 
Permeability experiments using Lucifer yellow and 10 kDa dextran in tissue-engineered iPSC-derived brain microvessels (from [24])
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in a Transwell® assay, measuring both apical-to-basolat-
eral (AB) and basolateral-to-apical (BA) permeability of a 
solute that is a substrate for the pump. If the efflux pump 
is polarized to the apical surface on the BMECs then the 
efflux ratio (ER) which is defined as PBA/PAB, is > 1. Due to 
the variations in experimental measurements, a molecule 
is generally considered to be an efflux substrate if ER > 2. 
Efflux ratios are typically in the range of 2–10, although 
higher values have been reported [146]. Confirmation 
that the ER is related to differences in efflux transport 
can be obtained by introducing an inhibitor. For com-
plete inhibition of a solute that is only a substrate of the 
target efflux pump, the ER will decrease to 1.0. However, 
the inhibitor may not be completely effective in blocking 
efflux and/or efflux at other pumps may result in only a 
small decrease in ER.

In tissue-engineered models it is difficult to perform bi-
directional permeability measurements and hence exper-
iments generally rely on measurement of differences in 
permeability (lumen to matrix) with and without inhibi-
tor. This method is most effective if the inhibitor is very 
efficient in blocking the target efflux pump (e.g. P-gp) and 
the solute is only a substrate for that efflux pump. A com-
mon approach is to measure the permeability of Rho-
damine 123 which is a P-gp substrate and to use a P-gp 
inhibitor such as cyclosporin A or tariquidar to reduce 
efflux. An alternative approach is to use gene editing to 
delete or knock down an efflux pump to replicate results 
from genetically engineered mouse models, however, this 
method may result in secondary effects that also modu-
late barrier function. The presence of efflux pumps can 
be confirmed by immunohistochemistry, although it is 
difficult to quantify absolute expression levels or polari-
zation to the luminal or abluminal membrane.

Studies of efflux in humans are rare. Continuous intra-
venous infusion of tariquidar, a P-gp inhibitor, increased 
the brain penetration of radio-labeled verapamil by 
2.7-fold in healthy human subjects, a 60% reduction in 
P-gp activity (Fig.  4D) [147]. Verapamil is used to treat 
migraines, but is also used as a substrate and inhibitor 
of the P-gp pump. Dual knockout of P-gp and BCRP in a 
mouse model resulted in a 40-fold increase in CNS pen-
etration of efflux substrates [148].

Endothelial cell turnover
Under quiescent conditions, the net turnover rate of 
BMECs is expected to approach zero. The net turnover 
rate is the difference between the proliferation rate and 
the rate of cell loss. Results from thymidine labeling in 
mice suggest that the turnover rate of endothelial cells in 
the brain is about 0.04% h−1 [149], an order of magnitude 
or more lower than endothelial cells in other tissues [150, 
151]. Two-photon microscopy studies in capillary beds 

in the motor and somatosensory cortex of mice show no 
change in either capillary segment diameter, capillary 
segment length, and the position of branch points over 
about 30  days [152, 153]. Assuming that these results 
imply no proliferation/loss over the imaging period, we 
estimate an upper limit of the net turnover rate of 0.001% 
h−1. In one of these studies, BrdU labeling of cortical 
microvessels in mice revealed no detectable endothelial 
cell division over 10  days during the post-natal period, 
indicating a cell division rate of zero during that time 
frame [153]. Additionally, formation and elimination of 
microvessel branch points decreased with age, result-
ing in no formation or elimination of microvessel branch 
points over 30  days in adult mice [153]. Turnover is an 
important but often overlooked parameter in bench-
marking tissue engineered vascular models. Validation 
is complicated by the lack of physiological data for the 
dynamics of endothelial cell division and loss in  vivo in 
humans or animal models. Based on intravital micros-
copy experiments we provisionally suggest that target 
values for cell division and cell death are ≤ 0.001% h−1, 
with a net turnover rate approaching zero.

Astrocytes
Astrocytes are involved in many processes in the brain, 
including neurotransmitter uptake and release, stress 
response, and neurovascular coupling [154–157]. Astro-
cytes typically have star-shaped morphologies with small 
cell bodies and radial branched processes that occupy 
distinct domains (Fig.  5A) [158]. These processes ter-
minate in end-feet that completely ensheath capillaries 
(Fig. 5B) [157–159]. Human cortical astrocytes have a cell 
body approximately 10  µm in diameter, and extend ~ 40 
primary process from the cell body resulting in an overall 
domain of about 150 µm [158]. In contrast, mouse astro-
cytes occupy domains of about 50 µm and extend fewer 
radial processes than their human counterparts [158].

In response to trauma or pathological tissue damage, 
astrocytes become activated, a process known as reactive 
gliosis [160–162]. Astrocyte activation is characterized 
by marked changes in protein expression [160, 162–164], 
a hallmark of which is the increased expression of inter-
mediate filament proteins including glial fibrillary acidic 
protein (GFAP) and vimentin [160, 165]. Astrocytes also 
secrete a wide range of soluble growth factors (such as 
bFGF and GDNF), inflammatory cytokines, and extracel-
lular matrix proteins [160, 163].

GFAP expression is often used as an astrocyte-specific 
marker, even though it is primarily a marker of acti-
vated astrocytes. S100B is also widely used to identify 
astrocytes, although expression may be limited to cer-
tain astrocyte subsets [166]. Two markers associated 
with BMEC-astrocyte signaling are aquaporin 4 (AQP4) 
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and the potassium ion channel, KiR4.1, which are highly 
expressed in astrocyte end-feet surrounding brain capil-
laries [167, 168].

In BBB research, astrocytes are usually cultured in 2D 
(e.g. in the basolateral chamber in a Transwell® assay). 
Physiological morphology is not believed to be critical to 
these experiments since the purpose is simply to provide 
a source of soluble factors secreted by the astrocytes. In 
2D culture, the morphology and number of processes 
emanated depends on the surface coating, and the cells 
generally express GFAP, characteristic of activation [169]. 
In 3D culture, the morphology and level of GFAP expres-
sion in human astrocytes is strongly dependent on the 
composition and mechanical properties of the matrix 
material [170]. Human astrocytes cultured in gels com-
posed of collagen, HA, and Matrigel exhibited a highly 
branched morphology, typical of their morphology 
in vivo (Fig. 5C), and very low levels of GFAP expression, 
a hallmark of quiescent cells [170].

Suggested benchmarks for incorporation of astrocytes 
into BBB models: (1) small cell body with radial branched 
processes with a domain size of about 150 µm. (2) End-
feet extending to capillaries or microvessels. (3) High 
expression of astrocyte markers KiR4.1 and AQP4. (4) 
Negligible expression of activation markers such as GFAP 
and vimentin under quiescent conditions.

Pericytes
Defining the morphology, organization, and function of 
pericytes in the brain has been inconsistent and contro-
versial. Recent imaging studies in genetically engineered 
mouse models suggest that much of the confusion over 
pericyte function arises from the diversity of perivascu-
lar cell types in the cerebrovasculature [152, 171–174]. 
Perivascular cells surrounding arterioles express smooth 

muscle actin (αSMA) and are identified as vascular 
smooth muscle cells (VSMCs) [172, 173]. These cells 
extend processes around the circumference of the arteri-
oles that appear as neighboring rings or bands up to 7 µm 
wide around microvessels (Fig. 6A, C).

In capillaries, perivascular cells are sparse and express 
platelet derived growth factor receptor (PDGFRβ), the 
proteoglycan neural/glial antigen 2 (NG2), and CD13 
[171–173, 175, 176]. These cells are defined as pericytes, 
and are characterized by a bump-on-a-log morphol-
ogy with an ovoid-shaped nucleus and narrow processes 
that are predominantly aligned along the capillary, and 
are completely surrounded by basement membrane 
(Figs.  1D, 6B, D, E) [152, 172–174]. The average den-
sity of pericytes in mouse models is about one cell per 
80 µm length of capillary [152]. The ratio of pericytes to 
endothelial cells has been reported at approximately 1:5 
by electron microscopy analysis of a small sample of rat 
cerebral capillaries [177]. In post-capillary venules, the 
perivascular cells, also identified as pericytes, extend 
both longitudinal and circumferential processes (Fig. 6C).

The VSMCs that surround arterioles are contractile 
and are believed to contribute to neurovascular cou-
pling [172, 173], however, the role of capillary pericytes 
in blood flow regulation remains to be established [178, 
179]. A further complication is that perivascular cells in 
the transition region from arterioles to capillaries express 
intermediate levels of αSMA and are difficult to classify 
as either VSMCs or pericytes.

In cell culture, pericytes are multipotent, with the capa-
bility to be differentiated into mesenchymal cells and 
neural cells [180–183]. This discovery led to the hypoth-
esis that pericytes may be a source of other brain-specific 
cell types and play a role in stress and injury response in 
the brain [180]. However, this remains to be confirmed 

Fig. 5  Astrocyte morphology. A Protoplasmic astrocyte in the human brain (adapted from [158]). B Astrocyte end-feet surrounding a microvessel in 
the human brain (adapted from [158]). C Astrocyte derived from neural progenitor cell cultured in an extracellular matrix consisting of collagen type 
I, Matrigel, and hyaluronic acid (from [170])
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since recent evidence suggests that pericytes maintain 
their identity during normal aging or in pathological set-
tings [184], and hence they are multipotent only after 
in vitro culture, and not in vivo.

Perivascular cells play a major role in angiogen-
esis where activated endothelial cells recruit pericytes 
through secretion of PDGF-ΒΒ which binds to PDGFRβ 
with high affinity. PDGF-ΒΒ is localized to the endothe-
lium through binding to heparin sulfate proteoglycans 
(HSPGs). The role of pericytes in angiogenesis is largely 
derived from studies of neovascularization associ-
ated with diseases such as cancer [185], and hence the 
response of pericytes to disease- or trauma-induced 

angiogenesis remains to be elucidated. In a microfluidic 
model of angiogenesis involving microvessels formed 
from human umbilical vein endothelial cells, co-culture 
resulted in recruitment of human placental pericytes to 
sprouts and refinement of the nascent vasculature [186].

Suggested benchmarks for incorporation of pericytes 
into BBB models: (1) pericytes are located on the ablu-
minal surface of models of capillaries or post-capillary 
venules. (2) Pericytes exhibit bump-on-a-log morphol-
ogy with predominantly longitudinally aligned processes. 
(3) Pericytes express PDGFRβ, NG2, and CD13; do not 
express αSMA. (4) Pericytes are embedded within base-
ment membrane.

Fig. 6  Perivascular cell morphology. A Scanning electron micrograph of a replica of an arteriole from human spinal cord showing: circumferentially 
wrapped VSMCs (2) and a capillary pericyte (4). B Pericyte-like structure (2) with primary and secondary processes (3). C Pericytes (green) and VSMCs 
(green) on venules and arterioles of NG2cre:mT/mG transgenic mice. D Thin-strand pericyte (green) extending long processes. Arrow denotes cell 
body. E Regions of transition from hybrid VSMC/pericyte morphology (arrowheads) to capillary pericyte morphology (arrows). A, B Adapted from 
[74]. C–E Adapted from [173]
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Astrocytes, pericytes, and barrier function
Numerous in  vitro studies have reported that TEER of 
endothelial monolayers is increased in the presence of 
astrocytes, astrocyte extract, or pericytes, and this trend 
is cited as evidence of the role of astrocytes and pericytes 
in upregulation and maintenance of barrier function 
in  vivo [187–195]. However, in many of these experi-
ments, the final TEER values are still well below physi-
ological (1500–8000 Ω cm2), casting some doubt on the 
in vivo relevance of these increases (Fig. 7). For example, 
the TEER of primary murine BMECs increased from 
about 35 Ω cm2 to about 140 Ω cm2 with pericytes in 
the basolateral chamber [187]. As described previously, 
monolayers of iPSC-derived hBMECs exhibit TEER val-
ues in the physiological range, particularly when derived 
with retinoic acid [2, 4], suggesting that astrocytes and 
pericytes are not essential for achieving physiological 
TEER values in in  vitro models, provided they are cul-
tured in the presence of key exogenous factors. However, 
monolayers of iPSC-derived hBMECs cultured under 
conditions with sub-physiological TEER values have 
approached [15, 21] or attained [2, 17] physiological val-
ues when co-cultured with astrocytes and/or pericytes 
(Fig. 7). Taken together, these results suggest that astro-
cytes and pericytes are not responsible for establishing 
barrier function, but can secrete factors that promote 

recovery or repair. If this hypothesis is correct, then we 
would expect that co-culture of astrocytes and/or peri-
cytes with optimally differentiated hBMECs would have 
no effect on barrier tightness, but may aid in recovery of 
barrier function in response to simulation of injury or 
stress. Whether these results from in vitro models reca-
pitulate the roles of these cells in the neurovascular unit 
remains to be established.

Summary
Here we describe 12 parameters for benchmarking 
in  vitro BBB models. These parameters are associated 
with structure (ultrastructure, wall shear stress, geom-
etry), microenvironment (basement membrane and 
extracellular matrix), barrier function (TEER, perme-
ability, efflux transport), cell function (expression of 
BBB markers, turnover), and co-culture with other cell 
types (astrocytes and pericytes). The relevant bench-
marks are dependent on the purpose of the model and 
provide a starting point to guide validation and future 
developments.

Although the complexity of tissue-engineered BBB 
models has advanced significantly in recent years, 
incorporation of multiple characteristics of the BBB 
remains challenging. Nonetheless, recent advances in 
tissue engineering and stem cell technology provide 
the foundation for new frontiers in BBB modeling. (1) 
Improved visualization of barrier function and turno-
ver: quantifying barrier function and turnover in  vivo 
is difficult and hence new models that enable imaging 
of these functions in real-time would increase under-
standing of BMECs in health and disease [202]. (2) 
Hierarchical BBB models comprised of an arteriole, 
capillary bed, and venule. Templating approaches gen-
erally mimic the structure of post-capillary venules, 
while self-organization approaches mimic brain capil-
laries. Recent advances in transcriptomics have pre-
cisely mapped zonation of the brain vasculature [203], 
providing a basis for comparison. Additionally, novel 
techniques to generate capillaries based on sprouting 
angiogenesis or growth along patterned channels may 
support this aim [35, 204]. (3) Recapitulating neuro-
vascular coupling: neuronal activity and blood supply 
are matched via changes in arteriole and capillary tone 
mediated by signaling between endothelial cells, peri-
cytes, astrocytes and neurons. Incorporation of neu-
rons into BBB-on-a-chip models that are responsive to 
neuronal activity would represent a significant advance. 
Recently, neurometabolic coupling was demonstrate 
in  vitro [205]. (4) Recapitulating human disease: com-
plex microfluidic models of brain disease typically lack 
endothelial cells; for example, recent work demon-
strated microfluidic triculture of neurons, astrocytes 

Fig. 7  Compilation of changes of TEER values for BMEC monolayers 
with or without astrocytes or astrocyte-conditioned media (A), or 
pericytes (P) in the basolateral chamber or on the basolateral side 
of the Transwell® membrane. Note that a wide range of primary, 
immortalized, and neural progenitor cell-derived cells from multiple 
species have been classified as either astrocytes or pericytes for 
simplicity, but individual references should be examined for cell 
sourcing details. Key for citations: 1—[196], 2—[197], 3—[194], 4—
[191], 5—[195], 6—[132], 7—[17], 8—[188], 9—[190], 10—[189], 11—
[193], 12—[187], 13—[198], 14—[199], 15—[200], 16 and 17 [201], 
18—[1], 19—[2], 20—[17], 21—[15], 22—[9], 23—[21]
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and microglia to mimic Alzheimer’s disease [206]. Inte-
gration of microfluidic models of brain disease and of 
the BBB models will support studies of human disease 
with increasing fidelity.
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