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Abstract

Beta-endorphin (β-END) is an opioid neuropeptide which has an important role in the development of hypotheses
concerning the non-synaptic or paracrine communication of brain messages. This kind of communication between
neurons has been designated volume transmission (VT) to differentiate it clearly from synaptic communication. VT
occurs over short as well as long distances via the extracellular space in the brain, as well as via the cerebrospinal
fluid (CSF) flowing through the ventricular spaces inside the brain and the arachnoid space surrounding the central
nervous system (CNS). To understand how β-END can have specific behavioral effects, we use the notion behavioral
state, inspired by the concept of machine state, coming from Turing (Proc London Math Soc, Series 2,42:230-265,
1937). In section 1.4 the sequential organization of male rat behavior is explained showing that an animal is not free
to switch into another state at any given moment. Funneling-constraints restrict the number of possible behavioral
transitions in specific phases while at other moments in the sequence the transition to other behavioral states is
almost completely open. The effects of β-END on behaviors like food intake and sexual behavior, and the mechanisms
involved in reward, meditation and pain control are discussed in detail. The effects on the sequential organization of
behavior and on state transitions dominate the description of these effects.

Keywords: Beta-endorphin, Behavioral states, Behavioral sequences, Cerebrospinal fluid, Volume transmission, Feeding
behavior, Sexual behavior, Pain, Reward, Meditation
Introduction
States
An organism, from a single cell to Homo sapiens, con-
tinuously responds to input from its environment with
(if all is well) an adequate action. Such input-action pairs
only partially describe the organism. Indeed, the same
external stimuli may give rise to a different reaction. In
that case we say that the organism is in a different
(internal) state. In this way states are defined as action
tendencies. The state of an organism may vary from
moment to moment. Therefore we define the state of an
organism (the notion also applies to mechanical systems
with sensors and actuators) at a given moment t, as the
way it acts when receiving certain stimuli at moment t.
Thus a state is an idealized mathematical notion, that
usually cannot be known in full, but that is nevertheless
very useful: it can be approximated and can serve for
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theoretical considerations. The notion of state is used in
computer science [1] and also extensively in mathemat-
ical system theory. Prior to this, statistical mechanics
described the state of a gas in a vat as elements of
a space of dimension 6.10^23, where the 6 stands for
the 3 position coordinates plus 3 velocity components
of the 10^23 (Avogadro’s number) molecules in a given
volume. Such complex states cannot be determined
empirically nor theoretically, but serve to derive the
well-established laws of thermodynamics.
Approximating states, sub-states
As approximation to a state in an organism, one can
consider a vector of variables having a given value [2].
Indeed, in the ideal case of having all possible values,
such a vector completely determines the behavior of the
organism, depending on presented stimuli. A sub-state
is a part of this vector of values, determining only partly
the input-action relation. For the notion of state one
may restrict oneself to relevant forms of input and
action, depending on the context of the subject matter.
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Table 1 The effects of β-END in the CNS

β-END effects in the CNS Short term Long term

Local Synaptic
transmission

Volume transmission

Regional and global Volume
transmission

Volume transmission
via CSF

In the present as well as in our preceding paper (Veening et al. [5]) a variety of
CNS-effects have been described for β-END. The available evidence suggests
that this neuropeptide exploits all kinds of messaging available in the CNS.
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These are sub-states relevant in a certain scientific con-
text. For example, in studying a species one may restrict
oneself to feeding or to sexual behavior. In such cases
one speaks about behavioral states. For Homo sapiens
another restriction is useful: it makes sense to focus on
signals available to consciousness and to intended ac-
tions. Then one speaks about mental states.
The notion of state is a so-called higher-order math-

ematical notion. A state is not involved with just one in-
put signal and one action signal, but with a whole class
of input-action signals. Making restriction eases the fact
that states are higher-order mechanisms and can be
helpful to obtain experimental or theoretical results. The
well-known human emotions (like anger, fear, desire,
surprise, disgust) are all examples of mental sub-states
of a more general mental state. They are sub-states be-
cause one can be angry and fight, or angry and submis-
sive, hence indeed some parameters are lacking.

Phases: keeping some sub-states fixed
By the definition above, a state is momentary, occurring
at a precise moment in time. A sequence of related (e.g.
when a certain sub-state being fixed) states during an
uninterrupted interval of time can be called a phase. An
example is an animal in the state of being hungry. It is
looking for food in order to eat. Usually the state of hun-
ger remains, even if food is found and the animal is eat-
ing. In this phase of eating, the sub-state hunger is more
or less fixed. It has to persist for obvious reasons: one
bite of food is not enough. But the persistence of hunger
is not exact; it (gradually) diminishes, for otherwise the
animal would (in the condition of abundance of food)
never stop eating. Another example of a phase with a
constant sub-state is sleep. The mechanisms for sensor-
ial input and muscular output are for a large part
blocked. But during the phase of sleeping not all sub-
states are the same: one can distinguish rapid-eye move-
ment (REM) and non-REM sleep. In both examples
phases may be divided into several sub-phases.
It should be emphasized that the notions of state,

sub-state, phase, and sub-phase are all quite natural
and familiar. Talking about the weather, the notion of
(momentary) state corresponds to the familiar values
indicating the temperature, air-pressure, direction and
speed of the wind, humidity, etcetera, all at one given
moment. The notion of phase that lasts for a certain
time interval applies to what we usually call the wea-
ther. Indeed, a rain storm consists of an uninterrupted
flow of states having in common that it is both raining
and windy. Exactly how much rain is falling and
whether there is also lightning (a sub-state at a given
moment) may vary during the interval of the phase of
the rainstorm. So there is place for sub-phases: “During
the rainstorm the lightning lasted unusually long.” We
see that the notion of (momentary) state is fundamen-
tal, while phase refers to a continuous time interval
during which the momentary states are similar but not
necessarily equal, for example by keeping some of the
sub-states constant. The concept of phase is very differ-
ent from that of state. There is a precise mathematical
definition of what is a state. What is a phase depends
on what one considers to be comparable. When exactly
does a storm end? One could say: “If no longer there
are gusts of wind with speed 150 km/hour.” Here there
is a place for choice (possibly very relevant for aero-
nautics). In the case of state at a given moment, there
is no choice.

Change and maintenance of states
In an organism with a CNS, induction of a new sub-
state in which a couple of parameters are to be changed,
can be organized efficiently using action potentials and
synaptic transmission. If, on the other hand, there is a
need for maintenance of a sub-state, in the terminology
above for a certain phase, there seem to be several natural
possibilities for doing this. 1. Sustained neural activity,
using synaptic transmission. 2. Local volume transmission
(VT) to keep certain chemical parameters locally at the
right level. 3. If parameters need to be changed globally
into a certain direction, then volume transmission through
the cerebrospinal fluid (CSF-VT) is an option (see Table 1).
For animals with a developed CNS, we have argued that
there is a mixed usage, in particular for neuropeptides like
oxytocin and β-END [3-5]. It has been shown that the
mechanisms work in parallel: a fast ephemeral axonal
message transports the signal of a peptide to relevant
areas; after that the slower but longer lasting volume
transmission does its work. Via second messengers, the ef-
fects of VT may last much longer, up to months, years or
even life-long [6-11]. This may be related to the question
why there are so many neuropeptides and what is their re-
lation to the variety of different behavioral states.
Numerous findings in the literature can be explained

by simply assuming that neuroactive substances, released
at specific points in the brain along the ventricular sys-
tem, reach their distant target areas by ‘going with the
flow’ of the CSF. This particular kind of long-distance-
VT has been included in all discussions concerning VT
[6,11-15] and in fact β-END was among the very first
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substances mentioned in relation to VT [9,11]. Mean-
while, the effects of substances released from particular
parts of the brain into the CSF to target distant brain areas
have been studied for a variety of substances such as
vasopressin, corticotropin-releasing-factor, gonadotropin-
releasing-hormone, melatonin and oxytocin [3,4,16-22]. Re-
cently, we have reviewed the available evidence showing
that β-END is another neuropeptide that can be re-
leased into the CSF to affect distant brain areas [5].
Most neurons producing β-END are located in the ar-
cuate nucleus (ARH) of the basal hypothalamus, along-
side the third ventricle, but an additional, smaller group
has been observed in the caudal brainstem. The in-
volved ARH-neurons produce a mixture of neuropep-
tides and are known as proopiomelanocortin- (POMC-)
neurons (for further details, see [5]).
The present review discusses more specifically the po-

tential of CSF-flow to influence a number of brain areas
together, to induce behavioral (state-) changes. The be-
havioral data, provided below, show on the one hand
that certain brain manipulations with β-END have a spe-
cial effect on specific behavioral transitions, thereby effect-
ively blocking transitions to another behavioral phase. On
the other hand, β-END induces general behavioral effects,
described by several authors as ‘a state of well-being’ (see
below), which also clearly suggests that the effects of this
neuropeptide are state-related. The present review focuses
on such behavioral effects of β-END and in addition we
discuss states and their selection and preservation on the
basis of the Turing-model [23] inspired by Turing [1].
Actually it is a hybrid model that is also inspired by the
neural nets introduced in Turing (1948), see [24,25] de-
scribing artificial neural nets, a connection already pointed
out previously [8].

The sequential nature of behavioral states in human
cognition
In Zylberberg et al. [26] and Barendregt & Raffone [23]
human cognition has been independently described as a
'discrete hybrid Turing machine’. This means the follow-
ing: 1. [Discreteness] actions proceed in a serial way
(one after the other, like a fast ticking clock, not con-
tinuously); 2. [Turing machine] these actions do not only
depend on the stimulus (a demonstrable drawback of
behaviorism), but also on the state of the organism/ma-
chine; 3. [Hybrid machine] how a given stimulus and
state produce an action is determined by a parallel
neural net (unlike in the classical Turing machine, where
these transitions are described by an explicit table). The
model is quite simple: important events, state changes
and actions, are occurring in a discrete serial fashion,
depending on the previous state and the input. Among
the possible actions, focusing attention is an important
one. This is the full model description. The discreteness
of human cognition is supported by psychophysical
evidence on visual illusions and periodicities in reaction
time (for a review see [27], as well as by electroencepha-
lographic evidence about discrete brain microstates, (see
[28]. Paper [27] emphasizes different aspects than does
[28]. For example the first paper beautifully answers the
question of John von Neumann how it is possible that
human cognition answers questions with high accuracy
while there is biological noise. The answer by Zylberberg
et al. [26] is convincing: “by discretization” (like a CD
avoids the noise of an old-fashioned vinyl record). The
second paper [28] emphasizes the use of states, and employs
the notion of a universal Turing machine (programmable
computer) in which states can be used as input. This enables
modification of automatic behavior.

The sequential organization of animal behavior: a ‘funnel
model’
In a behavioral study of rats [29,30] the structure of
feeding, sexual and agonistic behavior was analyzed by
means of an extensive transition analysis of the succes-
sive behavioral elements. In some experimental situa-
tions, regular transitions were interrupted by electrical
stimulation of the ventromedial hypothalamic nucleus of
the freely moving rat. This approach showed not only
the normal succession of behavioral elements in each of
the behavioral sequences, but also the interruptive effects
of the medial hypothalamic stimulation. These effects
were strongly dependent on the moment of delivery dur-
ing the behavioral sequence: during the ‘scanning’- or ini-
tial phase the normally succeeding transitions towards the
appetitive and consummator phases appeared to be com-
pletely blocked. When stimulation started during the suc-
ceeding, appetitive, phase, the experimental animal tried
to ‘switch back’ to the initial phase, as long as possible.
However, when the brain stimulation was delivered in
the final phase, animals tried to ‘complete the sequence’
before returning into the initial phase. These findings
together are the basis for the ‘Funnel Model’, [29-31]
describing the organization of behavior of the male rat,
as depicted in Figure 1.
In phase 1 the resident animal is just scanning the en-

vironment, with some sniffing and locomotion, and for
the observer it is not yet clear in which direction be-
havior will develop. If, however, palatable food or an es-
trous female or a male intruder is introduced into the
resident’s cage, its behavior rapidly changes into the ap-
petitive/procurement phase, with characteristic and
species-specific and goal-directed behavioral elements
to obtain the food/prey, to perform (pre)copulatory ac-
tivities or to approach and threaten the male intruder.
In the final consummatory/executive phase, food con-
sumption, or ejaculation or biting and fighting occur,
until the intruder shows submission or leaves the field.
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Figure 1 The Funnel-Model of the sequential organization of the male rat behavior. The model is based on a transition analysis of the behavioral
elements of the male rat occurring during a series of experiments, which included feeding behavior, sexual behavior and territorial aggression, combined
with the effects of electrical stimulation of the ventromedial hypothalamic nucleus (VMH). Explanation: see text. We have coined this model the ‘Funnel-
Model’, because it illustrates clearly that in phase 1 of the behavioral sequence the animal is relatively free to make choices leading to any possible
‘consummatory act’, or in a wider view, to any behavioral state. Phase 1 can be characterized as a transitional situation, from where any behavioral
sequence leading to a specific consummatory act can be performed or from where any possible behavioral state can be reached. At the end of phase 2
the situation is completely different: the male is ‘bound to’ perform the consummatory act, (mostly consisting of a series of physiological reflexes) and
the opportunity to select other behavioral transitions is temporarily blocked. Only after completing the consummatory behavior, the ‘freedom’ of phase 1
is available again. The ‘Funnel-model’ illustrates on the one hand that physiological and brain mechanisms are working to support behavioral perseverance
and to keep behavior directed to a specific goal, while on the other hand, especially in phase 1, the opportunity is raised to choose another strategy, or to
pursue another goal or to reach another state.
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In this final phase, the behavior contains many ‘re-
flexes’, organized at the level of the brainstem and
spinal cord, like chewing and swallowing, ejaculation as
controlled by the spinal ejaculation center [31-34] or an
extremely fast series of biting and fighting movements.
At the end of the consummatory phase the animal may
return to the initial phase, when (temporarily) satiated by
food or ejaculatory activities, but it may also enter the sec-
ond phase immediately again if satiation (= ‘negative feed-
back’-signals) did not occur sufficiently.
In Figure 1 the arrows indicate the number of transi-

tions from and to the successive behavioral phases. At
the left side, it is shown that in the early initiation-phase
behavioral transitions occur frequently (70%) towards
other behavioral sequences. Early in phase 2 a consider-
able number of transitions (about 40%) still occurs in a
direction not leading to the expected consummatory
phase, but later in the appetitive phase such an exit-
choice is made in less than 10% of the transitions. For
that reason we have coined the term Funnel-Model to
describe the sequential organization of behavior, because
it suggests that the possibility to choose for another
behavioral goal becomes more and more restricted. In
the laboratory situations studied, 50% of the animals, en-
tering Phase 2, continued towards the appropriate con-
summatory elements, apparently after some point of no
return. The animal had no choice other than completing
the sequence and only after completing the total se-
quence, the animal could either repeat a part of Phase 3
(15%), or enter Phase 2 again (35%) or, under our experi-
mental conditions, enter Phase 1 again (50%). We con-
sider an animal behaving in Phase 1 as least constrained,
meaning that all behavioral options are open depending
on the internal state and the external stimuli, and that
an animal at the very end of Phase 2 is most strongly
constrained, and virtually bound to finish the complete
sequence by performing the mostly reflexive acts com-
posing the consummatory phase 3.
This Funnel-concept was strongly supported by the,

mostly disturbing, effects of electrical stimulation of the
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ventromedial hypothalamic nucleus (VMH). During the
30-sec stimulation periods, animals did not or hardly
entered phase 2. When, however, stimulation happened
to start at the very end of Phase 2, animals seemed to
finish the sequence as quickly as possible. During VMH-
stimulation at the end of the sequence, animals never
returned to phases 2 or 3, but immediately entered a
vigilant version of Phase 1, remaining there during the
30-second intermittent stimulation period [29-31]. The
Funnel-shape of the behavioral progression during a se-
quence plays an important role in a wider context of
animal behavior: coping mechanisms and behavioral
states. Considering feeding, sexual behavior and agonis-
tic activities as just three of a variety of possible behav-
ioral sequences, we wish to address two aspects
specifically: on the one hand, goal-directed behavior asks
for perseverance for a specific goal, and the performing
animal should not be diverted by irrelevant external or
internal factors for a while. Behavioral funneling sup-
ports the animal to stay in a given behavioral sequence
or behavioral state, to stay on track until the goal is
reached. On the other hand, less constrained periods,
like Phase 1 in between specific behavioral sequences,
are necessary as switching points in order to allow the
animal to choose another behavioral strategy, for enter-
ing other states and/or to pursue other goals. The
funnel-shape reflects these opposing characteristics in a
continuous flow of behavioral performances. β-END ap-
pears to be involved in this behavioral flow and the
switching points (see sections 3.1 and especially 3.2).

Towards a general role of β-endorphin
Over the last decades, numerous reviews have appeared
on the behavioral and physiological aspects of β-END
[35-63]. From these, it becomes clear that β-END is in-
volved in a wide variety of functions ranging from the cel-
lular to the behavioral level. Many reviewers discussed the
placebo effects possibly occurring on the administration
of β-END and other substances influencing the μ-receptor
[64-70]. Several of the mentioned reviewers of the effects
of β-END proposed unifying concepts to embrace this var-
iety into a general behavioral function, but their proposals
seem to be pointing in different directions.
In 1982 Henry assumed that all general effects, for ex-

ample those affecting the pain-regulating systems in the
spinal cord, were induced by circulating opioids [71]. The
paper did not yet consider the possibility of β-END mes-
sages via the CSF. Henry asked, however, special attention
for the possibility that “the activation of a number of
functions together may be due to a global activation
of opiate receptors throughout the CNS”, which is consist-
ent with the main thesis of our present paper. In the
summary (p 239), after comparing the effects of stress,
and sexual activities with vigorous dancing and states of
trance, Henry concludes that mild activation of the β-
END system induces a state of well-being, while stronger
activation results in analgesia and euphoria. On the other
hand, “when the endorphin system is hypoactive, ……, an
increased drive ensues to satisfy a deprived state, whether
this is an appetite for food, water, social contact, or sexual
satisfaction, etc.” [71]. This paper contained the clear
hypothesis that the effects of endorphin depend on the
activity state of the endorphin system. In 1984, Akil et al.
concluded that “The multiplicity we behold in studying
endogenous opioid function is dizzying”, [72], focusing
in their review mainly on stress, analgesia and cardio-
vascular control mechanisms. In 1985 the role of β-
END in learning and memory processes was addressed
[73-75]. Izquierdo and Netto showed that “ a variety
of behavioral experiences activate the β-END system,
apparently as a result of novelty; that this activation is
mediated by the septo-hippocampo-subicular system;
and that this seems to play a role in regulation of the
retrieval of learned behavior …….” [74]. Due to its ra-
ther long recovery time, the arousal of the β-END sys-
tem “must be reserved for events that are particularly
striking to the animal”. “β-END may obviously play a
very important role in adaptive behavior” as well as in
developing (alternative) coping strategies (ibidem).
In 1986 the μ-receptor system was discussed [59].

After referring to a variety of behavioral and physio-
logical effects, as described in the literature, Panksepp
continues as follows: “Although many of the behavioral
effects could be subsumed by the principle that opioids
elaborate pleasure or habit processes in the brain,
such a perspective would not explain the peripheral
physiological effects of opioids. Suppose we broaden the
scheme and postulate that the global function of opioid
systems (μ and perhaps δ) is to counteract the influence
of stress. Although stress is a construct beset by serious
operational and conceptual difficulties, if we consider
any major perturbation of physiological homeostasis to
be a stress, with opioid arousal being a cardinal counter-
acting influence, most effects reported for the opioid
system fall into place” [59]. “The desirable affective ef-
fects of opioids can be understood as the psychic com-
ponent of a brain process that helps return activity in
perturbed neural circuits back to normal”. In addition,
“there is an arousal component to opioid action in the
brain, especially on cells of the mesolimbic DA (dopa-
mine) pathways, which appears to elaborate the euphoric
effects of opioids”, possibly to “promote homeostasis-
sustaining behaviors” . “Pleasurable opioid arousal invig-
orates those active post-homeostatic behavior patterns
such as rough-and-tumble play, that are expressed fully
only when other bodily needs have been fulfilled” [59].
After some final remarks concerning stress-induced-
analgesia, Panksepp concludes that “Perhaps stress-
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induced-analgesia would be more properly called relief-
correlated-analgesia”.
Some years later, Herbert summarized the functional

aspects of β-END as follows: this peptide “is particularly
concerned with regulating reproductive physiology and
is part of the mechanism whereby reproduction is con-
trolled by (and thus responsive to) various elements in
the external environment, including social and physical
stress” [38]. Central β-END is released during various
forms of stress and “is a prime example of a peptide
whose principal function seems to be to inhibit responses
in conditions under which they would be disadvanta-
geous” (p 739; emphasis is ours). “β-END-containing sys-
tems can be accessed by changes in either the physical
or social environment that signal adverse conditions for
reproduction. The result of activation of this system is a
common one: suppression of reproduction” [38].
At first sight, the comments of these successive re-

viewers may seem difficult to reconcile. However, taking
the idea of a main role for β-END in creating a general
state of well-being and pleasure (up to euphoria and
trance) as a starting point, the differences between the
reviewers tend to disappear. This state can be contrasted
with alternative states like stress and a variety of motiv-
ational states. As proposed by Panksepp, a variety of
stressors may induce perturbed neural circuits, and
changes towards an opposite preferred endorphin state
can be described, supported by activation of the meso-
limbic dopaminergic pathways, creating reward when
approaching the desired state. Basically, this is not much
different, however, from what happens when an animal
returns from a specific motivational state (hunger, thirst
or sexual arousal) to a state of satiety and homeostatic
balance, after performing the appropriate behavioral se-
quence [30,31,38]. Such motivational states may be the
result of serious homeostatic needs, which can be very
stressful. Concerning food intake, this may imply that
eating may be increased or decreased to reach the pre-
ferred weight level. We suggest that β-END influences
brain-activity towards a state of balance and well-being.
In order to keep the brain in this preferred state, β-END
apparently allows the animal to perform feeding and
drinking activities (see below) as well as social grooming
[76], which relieve stress and may restore a disturbed
balance. Breeding activities, however, under non-optimal
conditions, that would seriously disturb the state of
well-being, are apparently inhibited [38,77,78], just like
painful stimuli that have to be avoided [71,72,79]
Our conclusion concerning the general role of β-END

is therefore the following. On the one hand, β-END may
allow and stimulate behaviors that normally restore a
state of homeostatic balance and well-being, and on the
other hand it may inhibit behavioral changes that poten-
tially disturb this preferred state. On the basis of this
statement, several interesting and specific questions can
be raised about the behavioral effects of β-END, about
specific behavioral transitions, (as studied by Herbert
et al.) [71,72,79-85], as well as the effects of meditation.
These will be discussed in the next sections.

Behavioral regulation by β-Endorphin
Regulation of food intake
The POMC neurons in the ARH are strongly involved in
the regulation of food intake, at the sensory side
equipped with specific receptors and at the effector- side
with mechanisms controlling food intake. Most of the
POMC-neurons express leptin receptors [86,87], while
processing of the POMC-derived peptides is regulated
by energy balance [87-90]. On the effector side, it is fully
clear that hypothalamic POMC-neurons play an import-
ant role in the regulation of food intake [86,90-97].
Among the POMC-derivatives, alpha-melanocyte-stimu-
lating hormone (α-MSH) appears to be the main one,
exerting an inhibitory effect on food intake as shown in
human as well as animal research, via the melanocortin
receptor types MC3 and MC4 [90,92,94,95,98-103]. The
role of β-END in food intake regulation appears to be
less prominent and more modulatory in character. From
the earliest studies on, it became clear that central ad-
ministration of opiates, among them β-END, had a
stimulating effect on food intake [105-112]. The stimu-
lating effects of other neuropeptides, like galanin (GAL),
were also mediated by β-END release [113] while on the
other hand serotonin seems to play a role in the feeding
effects of β-END [114-116]. Several recent findings have
complicated the role of β-END in food intake. Its levels
in both CSF and plasma were elevated after intake of
palatable sucrose solutions in rats [117], while ingestion
of a fatty meal induced neuronal activity in the β-END
neurons, apparently after oropharyngeal stimuli arriving
via the glossopharyngeal nerve [118]. This finding is
in agreement with an earlier observation showing
that, in the rat, β-END plays a special role in the he-
donic preferences for dietary fat [119]. In addition, β-
END deficient mice are less willing to work for palatable
food, suggesting motivational changes in the appetitive
phase [120].
Maybe, the short-term effects of β-END on food intake

are different from the long-term effects, since intra-
cerebroventricular (icv) infusion of β-END in rats stimu-
lated food intake but chronic infusion did not sustain
these stimulating effects [104]. Recently it was also ob-
served in transgenic mice, that that short- and long term
effects on POMC-neurons may be different. The long-
term effects seem to be more complementary to the gen-
eral POMC-effects [120,121]. After a temporary initial
increase, male rats showed a lower level of food intake
after a few days of chronic icv β-END administration
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[122]. This weakly inhibitory effect is in agreement with
results obtained from β-END-KO mice, which gained an
additional 10 – 15% of body weight compared to wild-
type controls. These KO mice showed an increase in food
intake without changes in basal metabolic rate. The in-
creased body weight consisted completely of an increased
amount of white body fat and was only observed in male
mice, not in females [121]. Finally, it has been suggested
already in the early nineties [123-126] that the role of β-
END in food intake is mainly sustaining, instead of playing
an initiating role.
The question that has to be raised now is: How far it

is possible to integrate this variety of findings into a gen-
eral role for β-END in the regulation of food intake?
The short-term effects of β-END seem to be most prom-
inent and decrease the appetite-inhibiting effects of α-
MSH [104]or a preceding stressor [102] and thereby
β-END may play a special role in the appetitive phase of
feeding behavior. These effects can be linked to the re-
ward system which induces positive feedback stimuli in
the appetitive phase [127-129] to sustain food intake of
palatable food [119,121,126]. Apparently, “β-END select-
ively affects a motivational component of reward behavior
under non-deprived conditions” and “in the appetitive
phase, β-END release increases the incentive value of food
as a primary reinforcer” [120]. These behavioral effects
certainly contribute to restore a state of well-being, as
postulated for a general role of β-END. The question as to
how far the long-term effects of β-END, consisting of
moderate inhibitory effects on food intake, contribute to
long term body homeostasis and weight regulation (only
in males), or whether these have to be considered merely
as a side-effect of β-END supporting some other POMC-
derived peptide(s), remains open for further research. In
conclusion, the central effects of β-END on food intake
are modulatory and play a main role in the introductory/
appetitive, goal-directed phase of feeding behavior. In this
phase behavior can be most easily adapted to obtain or
preserve a preferred state [30,31] or to choose an alterna-
tive coping strategy.

Sexual behavior
Despite the fact that the effects of opioid administration
have frequently been described as reaching an orgasmic
state of euphoria, the effects on sexual behavior are gen-
erally inhibitory [130]. The acute and long-term effects
turned out to be complex [131-133], including those of
β-END, which plays a role in male as well as in female
sexual behavior. In the male, β-END is involved in the
regulatory control of testosterone, via luteinizing hormone
(LH) and gonadotropin-releasing hormone (GnRH) mech-
anisms. The effects are mainly inhibitory [132,134-137].
The details of the observed effects were, however, com-
plex [131,133,138], rather variable, for instance those
on ejaculation latencies and of naloxone [134,139-142].
Also the effects of ejaculation, and erotic stimuli (in
humans) did not lead to consistent results when meas-
uring the peripheral β-END levels [132,143-147].
Similar to what we have discussed for the control of

feeding behavior, several findings suggest that β-END
plays an important role only in specific phases of sexual
behavior, especially the precopulatory, appetitive phase.
In 1981 Meyerson observed that after icv administration
amicable contacts between animals increased whereas
sexual responses were decreased [148]. Later studies sup-
ported a specific role of the μ-receptors in pair-bonding
[149]. Numerous studies have reported the deteriorating
effects of stressors on male sexual performance [150-155].
In addition, the analgesic effect of copulatory activities has
been noted repeatedly [147,156-157]. All findings, taken
together, strongly suggest that the main role of β-END is
played in the appetitive, precopulatory phase of sexual be-
havior, to pave the way for the copulatory activities them-
selves. In this phase, the dopaminergic system is also
involved, providing a rewarding basis for the ongoing activ-
ities. The effects of β-END during the appetitive arousal
state are related to its stimulating effects on the reward sys-
tems and an important role, especially in the medial preop-
tic area (MPOA) [130,131,133,158-172]. In 2004, it was
shown that sexual behavior and especially sex-associated
environmental cues activate the mesolimbic system in
male rats. This activation induces internalization of μ-
receptors in the MPOA within 30 minutes after mating
and this internalization was still evident about 6 hours
later [168,173]. Naloxone prevented this internalization
but not the concurrent Fos- expression of the MPOA-
neurons [173]. In 2007, it was shown convincingly that
POMC-neurons in rats were activated by the arousal as-
pects and not by sexual activities themselves [167].
These findings are in full agreement with earlier sug-

gestions concerning the effects of β-END on interpret-
ation and impact of environmental stimuli [174,175].
Moreover, these findings suggest that the neural mecha-
nisms involved in either the arousal/precopulatory phase
or the copulatory phase of male sexual behavior show
some fundamental differences. In the rat, an initial appe-
titive, precopulatory phase of approaching and investi-
gating the female, is usually followed by a sequence of
copulatory activities (mounts and intromissions) eventually
leading to an ejaculation [176]. After a post-ejaculatory
interval of several minutes, the whole behavioral sequence
may start again. (See Figure 1 for an overview of the behav-
ioral sequence.) β-END seems to play its specific role espe-
cially in the appetitive arousal phase (and in the post-
ejaculatory period), but not during the copulatory activities
themselves.
Support for the idea of ‘phase-specific’ effects of β-

END was obtained by the group of Herbert [38]. They
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injected β-END bilaterally by micro infusion via brain
cannulas into several specific rat brain areas and made
some striking observations. After showing the generally
inhibiting effects of β-END and the involvement of dif-
ferent brain areas [80-82], it was observed that the in-
hibitory mechanisms of the MPOA and the medial
amygdala (MeA) were very different, but had eventually
the same effect. In both brain areas a specific behavioral
transition in the usual sequence of (pre)copulatory
events turned out to be of crucial importance: the transi-
tion between the appetitive, precopulatory, phase and
the copulatory phase turned out to be important for
the β-END control. After β-END administration into the
MPOA, investigative activities were normal but the
males never entered the copulatory phase, unless the β-
END administration started after the initiation of the
copulatory activities. In that case, these were performed as
usual. When, however, a new female was introduced, the
same precopulatory-copulatory transition was blocked
again [38,85]. On the other hand, the same behavioral
transition turned out to play a similar important role in
the MeA, but in a completely different way. Now the
precopulatory phase was completely suppressed by the β-
END administration and the animals never made the
transition to the copulatory phase. However, copula-
tory activities themselves were completely normal, as
observed when β-END was administered in the later
copulatory phase [38,83,84]. These transition-effects were
not caused by sensory (olfactory or visual) disturbances
possibly induced by the β-END infusions [38].
Apparently, the transition step between precopulatory

and copulatory phases of masculine sexual behavior is
under β-END control and copulation can be effectively
blocked by either prevention or an endless continuation
of investigative activities. Since the MeA, especially its
posterodorsal part, receives genitosensory as well as ol-
factory information, and since it is reciprocally con-
nected to the MPOA [31,32,177-185], this part of the
neural circuitry not only plays a role in the induction of
the post-ejaculatory interval, but may just as well be in-
volved in the general control of ejaculatory activities.
Manipulation of a specific but crucial behavioral transi-
tion is an extremely efficient way to induce or block the
occurrence of specific parts of behavioral sequences!
Herbert concluded from these and other studies that β-
END “is a prime example of a peptide whose principal
function seems to be to inhibit responses in condi-
tions under which they would be disadvantageous” [38]
(p 739). In our view, β-END appears to play a dual modu-
latory role in male sexual behavior. On the one hand it
facilitates the appetitive phase by reducing stress and
potential pain and by activating the reward system
[130,131,133,156,165], on the other hand by inhibitory
effects on specific transitions in the regular copulatory
pattern in addition to short-term- (post-ejaculatory re-
fractory period) or long-term- (stress, seasonal effects)
suppression of reproductive activities. Since the copula-
tory phase itself is hardly influenced by β-END, these be-
havioral effects fit a more general anti-stress-function:
facilitating behavior towards a state of well-being, reward
and even euphoria but inhibiting behavior under in-
appropriate, potentially stressful, conditions. This dual
role of β-END on male sexual behavior is rather similar
to what we concluded about its role in food intake.
In the female, β-END mainly has an inhibitory effect

on receptivity, lordosis behavior and reproduction
[40,132,186-193]. This inhibition occurs via the GnRH
system in the medial preoptic area, which receives numer-
ous β-END contacts [137,193-211], as well as via add-
itional μ-receptive MPOA neurons [137,168,212-217].
Obviously, the inhibitory effects are estrogen-dependent
[168,193,218-222], but additional neuroactive sub-
stances are also involved in its regulatory control, like
neuropeptide Y (NPY), GAL, serotonin (5-HT) and
GABA [168,195,223,224]. Interestingly, however, icv-
studies showed that β-END could have also a facilitat-
ing effect on lordosis, given the proper conditions and
location. In ovariectomized rats, primed with estrogen
(and progesterone) lordosis in response to male mounts
was only inhibited via high-affinity μ-receptors, but fa-
cilitated via low affinity δ-receptors [132,186]. The fa-
cilitating effects of β-END were restricted to the first
6 hours after estrogen administration [193,194-199].
This facilitatory effect changed into an inhibitory effect
over the next 6 hours of estradiol-benzoate (EB)-priming
[193,196-199,225]. The mechanisms involved were de-
termined to be not only time-dependent but also
location-dependent. If crystalline EB was implanted in
the septal-preoptic regions, β-END effects were facilita-
tory, if implanted into the ventromedial hypothalamus the
EB-implant had an inhibitory effect, while at the level of
the mesencephalic reticular formation no effects were ob-
served [225]. In 1997, Gorzalka and coworkers showed
that the effects of β-END administration on lordosis were
ventricle-dependent: in the lateral ventricle it worked
facilitating, but in the 3rd ventricle it had an inhibi-
tory effect, probably due to the activation of different
populations of opioid receptors [226]. This observation is
reminiscent of other location-dependent effects, as ob-
served by [225] but Gorzalka et al. also noted that β-END
had no effect on proceptive behavior, like ear-wiggling
[226]. This observation is especially interesting, because it
suggests again a phase-specific effect: that β-END may
have differential effects on the early introductory/arousal
phases of female sexual activities compared to the suc-
ceeding copulatory phase. These differential effects are
reminiscent of our earlier discussion for male sexual activ-
ities, but it is obvious that additional information is
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needed. In conclusion, the effects of β-END on female
sexual behavior appear to be modulatory, as in the
male. Depending on the brain areas affected and the
state of the opioid receptors involved as well as the go-
nadal state of the animal, β-END may have facilitating
or inhibiting effects on lordotic behavior. In how far
these effects contribute to a state of well-being, as sug-
gested for the male sexual activities, deserves further
experimental attention, but the avoidance of inappro-
priate breeding conditions, as hypothesized by Herbert
[38] certainly contributes to this state.

Reward and meditation
β-END is known to induce euphoria and to have reward-
ing and reinforcing properties [71,227,228]. Numerous
recent reviews discussed the involvement of mu-
receptors in the liking and wanting aspects of food re-
ward as well their role in a variety of eating disorders
[229-246]. Concerning the rewarding aspects of sexual
behavior and the involvement of opioids, a similar series
of papers and reviews is available to support this func-
tional relationship [166,167,247-254]. The bidirectional
interactions between the opioid systems, including β-
END, and the mesolimbic (and incerto-hypothalamic)
dopaminergic systems compose the neural substrate for
the rewarding effects of eating and sexual behavior.
These interactions can be considered as crucial compo-
nents of the mechanisms involved in motivational drives
and goal-directed behavior. The motivational effects of
numerous neuroactive substances are mere reflections of
their inhibitory or excitatory actions on this dopamin-
ergic reward system, extending between the ventral teg-
mental area (VTA), the nucleus accumbens and the
MPOA. “The (induction of a) reward state in males and
females is mediated by opioids and the medial preoptic
area of the anterior hypothalamus is a crucial site for
sexual reward” [249,255].
In addition to the natural rewards obtained by specific

behavioral actions, numerous drugs are able to influence
this reward-system directly or indirectly without any
specific behavioral activity. These substances induce
drug-seeking behavior and addiction with all of their
deleterious consequences for the individual and society
[227,228,240,256-259]. β-END plays an eminent role in
addiction because of its mutual modulatory relation-
ships with the mesolimbic dopaminergic system
[256,268,260-267]. Its rewarding role in cocaine, alco-
hol and nicotine addiction is fully supported by the
presently available evidence, while the evidence for a
role in addiction of tetrahydrocannabinol (THC), the
psychoactive component of marijuana, seems to be
more circumstantial as yet [228,257,258,261,268]. Con-
cerning addiction-related stress control, β-END seems
to play a prominent but complicated role in the
successive phases involved in addiction [228]. While
enhancing the rewarding properties of the addiction-
related behaviors, β-END diminishes the activity of the
stress-related circuitry, (involving the locus coeruleus
and the CRH-neurons in the paraventricular hypothal-
amic nucleus), induced by the anxiogenic side-effects
of cocaine [269-273] or by unpredictable distress
[273,274]. The extinction-phase, as a stressful transi-
tion between the maintenance- and the withdrawal
phases [228], induces again a tremendous increase in
β-END release in the nucleus accumbens [276]. During
the withdrawal phase, drug desire (craving) remains
high while levels of β-END are steadily decreasing
[228,268,277-279].
Generally speaking, the role of β-END in reward and

addiction can be described as follows: on the one hand it
may enhance the initial rewarding properties of the
(new) behavior or drug, while on the other hand it
softens the stressing side-effects of the drug use or other
aspects of the addiction-related behavior. Maybe these
roles can be considered as the two sides of the same
coin, because of the mutually-inhibiting effects of the re-
ward circuitry versus the stress circuitry [280]. However,
several findings suggest that the relationship between
stress and reward is more complicated than a matter of
mutually inhibitory circuitry. In fact, the relationship
shows a remarkable similarity to the biochemical aspects
of the adrenal stress response, where adrenalin serves
the function of making all bodily reserves available for
handling the challenge, while at almost the same mo-
ment the corticosteroids start their, partially counteract-
ing, anabolic activities for restoring the homeostatic
balance in order to be able to cope with future chal-
lenges [281,282]. We assume that a similar balanced re-
lationship is also effective with β-END if processes
related to addiction activate the stress-circuitry.
Generally, the neuronal circuitry activated by stressors

involves such brain areas (or parts of) as the nucleus of
the solitary tract, the parabrachial nuclei, the locus coer-
uleus, the central amygdaloid nucleus, the bed nucleus
of the stria terminalis, the hypothalamic paraventricular
nucleus, the hippocampal formation and cortical areas
such as the insular and anterior cingulate regions. De-
pending on the nature of the stressor, physical or psy-
chogenic, the brain areas mentioned may play a more or
a less prominent role in activating the neurons of the
pituitary-adrenal axis via the corticotropin-releasing-
hormone (CRH-) neurons in the paraventricular nucleus
of the hypothalamus [283-285]. For example, in the case
of physical illness, the lower brainstem areas may play a
more prominent role than during chronic, psychogenic
stress [286-290]. To complicate matters even one step
further: substances like ethanol also play a role in these in-
teractions, as they have been shown to influence anxious
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behavior, behavioral despair and the effects of stressors on
the tail-suspension test or on novelty-suppressed feeding
in mice [102,281,291]. These interaction-effects are too
complicated to discuss them further here, but they show
convincingly that β-END is directly or indirectly involved
in a range of behavioral effects (feeding behavior) and
physiological effects (adrenal size).
Apparently, a CRH-dominated stress circuitry is acti-

vated under various circumstances. While it has been
observed that CRH in the CSF regulates the expression
of the μ opioid receptor [292], the nociception related
endothelin system is regulated by β-END levels in the
CSF [293]. Interestingly for the present review, however,
are the numerous observations showing that activation
of the CRH-neurons induces almost immediate acti-
vation of β-END neurons, inhibiting further release of
CRH [268,269,271-273,294-319]. This suggests that, simi-
lar to the ameliorating effects of the corticosteroids on
the release of adrenalin, β-END is invoked immediately
to modulate the maladaptive effects of the neural stress
response. Activation of a rewarding feel-better-circuitry
would be most effective to counterbalance stressor-
effects, not only for suppressing pain (see below) if ne-
cessary to escape a predator, but also to cope with minor
daily and repetitive challenges. Apparently, the neural
circuitry involved is a complex mix of neuronal and
CSF-signals.
Meditation has been shown to be very effective to coun-

terbalance stress effects throughout the ages and its effects
clearly stimulate the levels of β-END [296,297,307]. The
central CSF-levels have not been measured yet under
these circumstances. In a recent paper, however, studying
ecstatic meditation using functional magnetic resonance
imaging (MRI) and electroencephalographic techniques, it
was observed that not only superficial cortical brain areas
are involved in the effects, but that activation of the
reward-system (the dopaminergic fibers contacting the
accumbens nucleus) also occurs [294]. This suggests
strongly that central parts of the CNS are involved in the
effects of meditation, but additional supporting evidence
is certainly needed. In the last 2 years, more than 100 pa-
pers have appeared about the effects of mindfulness-based
stress reduction, that is inspired by vipassana meditation
coming from Buddhism, on a variety of symptoms related
to chronic pain, anxiety disorders, depression versus well-
being and several other medical symptoms like fatigue,
fibromyalgia and insomnia [306,309-326]. Although these
stress-counteracting approaches show large differences in
the way mindfulness is practiced [319], and are drifting
away from classical mindfulness [327], obvious effects on
the neuronal substrate have been observed, using a variety
of techniques [314,319,328-336]. We conclude that medi-
tation is an effective means to manage stress [280] and
that β-END is extensively involved in the balance between
the positive and relaxing effects of activation of the reward
circuitry and the negative consequences of physical prob-
lems, pain and (chronic) stress [337], shifting the balance
in a positive direction, in accordance with our hypothesis
as developed by Panksepp [59,338-344]. The euphoric
state, with a total neglect of bodily and environmental
cues including complete suppression of pain [71,79] can
be considered as the most extreme condition in the regu-
lar balance between the brain-states and circuitries related
to stress and stress-relief.

Pain control mechanisms
The extremely potent analgesic effects of β-END were
discovered early, [350-355]and during the late seventies,
eighties and early nineties an extensive series of publica-
tions appeared in which CSF-levels of β-END were mea-
sured and correlated with the pain levels experienced by
patients and experimental animals under a variety of
painful conditions. This surge of interest emerged from
the finding that the analgesic effects of β-END were ob-
vious only after icv-, and not after iv-administration
[348,351-355] This difference illustrated clearly the
relative effects of the rather impenetrable blood–brain-
barrier combined with the almost 3 times shorter half-life
of β-END in the blood versus in the CSF (about 37 min
vs. about 97 min; [355]. Despite the originally high expec-
tations, it turned out that the correlations of central
β-END levels with chronic pain states were weak or negli-
gible [356-364] with a few exceptions related to abdominal
pain and migraine, where CSF-levels tended to be lower
than normal [365-372]. While these essentially negative
findings make it impossible to use CSF-levels of β-END as
a parameter signaling pain perception, there is no reason
to conclude that CSF-β-END levels do not play a role in
pain control [373].
From the beginning it was established that not only icv-

administration of β-END [354,355] but also electro- or
magnetic stimulation [346,374-397], electro-acupuncture
[380-397] as well as physical exercise or therapy [398,399]
induced strong analgesic effects, by elevating the levels of
β-END in the CSF. Since acute painful stimuli also raise
these CSF levels considerably [170,359,375,400,401], it
is fully clear that the central release of β-END forms
part of an antinociceptive system controlling pain
[71,79,402,403]. It has been observed that mindfulness
meditation modulates pain perception as well, e.g.
[320]. This antinociceptive system includes the arcuate
hypothalamic nucleus (ARH), with its content of POMC-
neurons, the periaqueductal gray region [390,404,405] and
several caudal brainstem areas, including the caudal raphe
nuclei, from where 5-HT projections descend into the
spinal cord [402,403] Many experimental data show, how-
ever, that this system is not limited to a set of (partially re-
ciprocal) neuronal connections but that β-END, released
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into the CSF to go with the flow [14,404,405], plays an im-
portant modulating role.
As early as 1982, James Henry argued that the variety of

conditions under which β-END is released and the fact that
these conditions exert effects on a number of systems to-
gether, requires a global activation of opiate receptors
throughout the CNS [71]. At the time, blood-borne opioid
hormone, released by the pituitary or a pituitary-controlled
peripheral gland to enter the CNS and the CSF, appeared to
be the most appropriate candidate to induce such a gener-
alized response [71,79]. Later studies, however, showed
that β-END can also be released locally in peripheral
tissues, to control (local) pain [177,179,181,406-408].
Peripheral levels of β-END may influence the spinal
cord [5,71], but brain-CSF levels arise from the arcuate
hypothalamic nucleus (ARH) as well as from numerous
terminals surrounding the ventricular spaces and are
sufficiently high to induce the central effects. The fol-
lowing findings provide additional evidence.
Extracellular levels of β-END in the ARH show two-

to fourfold increases upon painful or 5-HT stimulation.
While this release may potentially activate all neighbor-
ing POMC neurons, the destination will be the adjoining
CSF [404,405], to ‘go with the flow’. The flowing CSF
may collect additional POMC and β-END from the
many varicose fibers running subependymally alongside
the ventricular system. It is therefore not surprising that
high levels of β-END have been measured in the CSF
after stimulating its release by a painful or an electrical
stimulus [170,374,375,377,409-412] CSF-levels increased
20-fold, after this central release and the analgesic effects
were clearly correlated with the duration and the increase
of the levels. In 2001 Shen [379] reported an elucidating
rabbit experiment. CSF from one animal, after 30 min of
electro-acupuncture, was infused into the lateral ventricle
of a naïve recipient rabbit. The analgesic effect was ob-
served in the recipient rabbit, showing that volume trans-
mission via the CSF can indeed be effective. More
recently, Zubrzycka and Janecka, showed in an experiment
involving both tooth pulp- and central gray electrical
stimulation, that β-END was released into the CSF after
tooth pulp stimulation and this release could be inhibited
by the PAG-stimulation [405,412]. They concluded that
‘endogenous β-END, released as a result of electrical tooth
pulp stimulation in orofacial pain, diffuses through the
cerebroventricular ependyma into the CSF and exerts a
modulatory effect, mediated by μ-receptors, altering the
properties of neurons in the trigeminal sensory nuclei,
interneurons, and motoneurons of the hypoglossal
nerve’ [405].
Additional evidence comes from intranasal (IN-) appli-

cation studies, showing that a large variety of substances
follow direct nose-to-brain pathways to enter the brain
cavity and the CSF compartment, generally within a few
minutes [22]. For β-END itself the effects of IN-
administration have been hardly reported, probably be-
cause of its adverse effects on the nasal epithelium
[413,414] Only in an older monkey study clear-cut effects
of IN-β-END were reported, in this case on induced pro-
lactin levels [415]. Several substances supposed to elevate
central β-END levels: desmopressin, [416] and calcitonin
[417,418] have been tried with variable results and without
measurement of CSF-levels. Intranasally applied mor-
phine, however, has been shown to reach the ventricular
system of rodents within minutes with a clear distribution
advantage over the intravenous and especially oral admin-
istration levels [419,420]. Peripheral levels apparently
played no role in the elevated brain levels. Several sub-
stances are currently applied intranasally for clinical pain
relief, especially fentanyl [416,421-426] and the opioid sys-
tem and the CSF as the transport medium seem to be al-
ways involved in the effects of such substances. In
addition to mechanisms introducing substances into the
CSF, it has also been observed that specific ependymal
cells and other neurons are able to take up and transport
specific substances from the CSF, towards the soma of
neurons, frequently located far away from the ventricular
surfaces, where they may elicit responses leading to
changes in gene expression [427-429].
Already mentioned were some studies in which trans-

port via the CSF seems to be the only possible explan-
ation of the observed effects. Yadid et al. observed a
strong reduction of pain behaviors after transplantation
of adrenal medullary cells into the subarachnoid space
of the spinal cord [430,431] but there were several rea-
sons to assume that the observed effects were not the
local effects of the transplant. In 2000, Yadid et al.
showed the involvement of central β-END mechanisms
and the arcuate nucleus in the observed analgesia, ap-
parently by releasing β-END via the CSF as a transporter
of messages [411]. In another interesting study, Finegold
et al. transferred genes to the meninges surrounding the
spinal cord, upon which pia mater cells started to pro-
duce β-END [432]. This pia mater-release of β-END had
a clear analgesic effect on an inflammation model of per-
sistent pain. Their paracrine paradigm for the treatment
of chronic pain shows that substances released in the
CSF become functional when transported via the CSF.
In conclusion, β-END plays a complicated but major
role in the mechanisms controlling pain, and transport
via the CSF (volume transmission) forms an essential
part in these effects [14]. This role is in full agreement
with the rewarding and anti-stress roles put forward in
the preceding sections of this review.

Other effects of β-END
In order to limit the scope of the present review,
additional behavioral, functional and clinical effects of
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β-END will not be discussed in detail. Such effects have
been reported, for example, on the mechanisms of intes-
tinal transit [439] cardiovascular control [103,122,434]
and the growth and metastasis of mammary tumor cells
[435], but also on the immune system, complex arthritic
inflammatory syndromes, fibromyalgia and cerebral in-
farction [180,271,436-448]. An extra complication is that
the control and effects of β-END are extensively related
to a variety of other humoral and neuromodulatory fac-
tors, like serotonin, involved in syndrome such as
schizophrenia and depression [449,450]. For that reason,
Hegadoren et al. called attention to a possible role of β-
END in the pathophysiology of major depression [337].
They reviewed the multiple interactive links between
serotonin, β-END and the HPA-axis involved in major
depression. Such interactions are of great importance in
view of the hypothesis that β-END is involved in anti-
stress mechanisms and well-being. Perhaps the involve-
ment of β-END in depression gives this mind-state a
considerable, but undesirable, degree of stability. In that
case, the stability of a depression has to be considered as
an unpleasant side effect. A discussion of these possibil-
ities is beyond the scope of the present review.
One interaction effect deserves some special attention,

namely with the neuropeptide oxytocin (OT), because this
peptide plays a major role in positive social interactions
and because of it may be released into the CSF to influ-
ence distant brain areas by going with the flow [3,4,22]. In
1989 Melrose and Knigge studied horse brains and pro-
posed evolutionary relationships for POMC, oxytocin
(OT) and vasopressin (AVP) neurons, all of them sur-
rounding the ventricular system and equipped with an ex-
tensive set of mutual connections [451]. The remarkable
co-existence of opiocortin and corticotropin-releasing fac-
tor immunoreactive CRF-IR projections surrounding the
ventricular system, as observed from the earliest studies
[452,453], contributes to the suggestion of mutual inter-
action effects. The fact that each of these neuropeptides
shows facilitatory or inhibitory effects on behavior as well
as physiological mechanisms like feeding, sex, aggression,
pain, reward, (anti)stress and social relationships like ma-
ternal and pair-bonding behavior, makes the conclusion
unavoidable that these neuropeptides must operate in
close mutual interactive relationships. Many behavioral
and physiological studies support the existence of these
functional relationships [14,182,454-479]. Concerning
the focus of the present review, central mechanisms
using the CSF for transport, readers are also referred to
[3-5,14,22,480,481].

Conclusions
Summarizing the effects of β-END on brain and behavior
as described in the literature, they seem to be separable
into 2 categories. On the one hand, β-END, released into
the CSF, to go with the flow, may have far-reaching effects
on distant brain regions involved in a variety of behaviors,
related to reward mechanisms and motivational and men-
tal states. This is the global effect with a tendency towards
stress-reduction, leading to a sense of well-being by
homeostatic balance and behavioral stability. On the other
hand, and in addition to this state-transition- effect, local
administration of β-END in specific brain areas like amyg-
dala or hypothalamus induces specific inhibitory effects
on transitions of the behavioral sequence thereby prevent-
ing the occurrence of a specific goal. A funnel-model has
been introduced to describe the successive phases of a be-
havioral sequence. The question as to how far the specific
behavioral effects always support the global effect or have
to be considered as specific local mechanisms controlling
specific behavioral sequences needs further attention and
research. Additional experiments with local manipulation
of β-END levels in specific brain regions are needed to
shed more light on the complex global and specific effects
of β-END on the CNS, on behavior and behavioral
transitions.
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