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Fluids and Barriers of the CNS

Plasma and cerebrospinal fluid 
concentrations of neurofilament light protein 
correlate in patients with idiopathic normal 
pressure hydrocephalus
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Abstract 

Background  Neurofilament light chain protein (NFL), a marker of neuronal axonal degeneration, is increased in cer-
ebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). Assays for analysis of NFL 
in plasma are now widely available but plasma NFL has not been reported in iNPH patients. Our aim was to examine 
plasma NFL in iNPH patients and to evaluate the correlation between plasma and CSF levels, and whether NFL levels 
are associated with clinical symptoms and outcome after shunt surgery.

Methods  Fifty iNPH patients with median age 73 who had their symptoms assessed with the iNPH scale and plasma 
and CSF NFL sampled pre- and median 9 months post-operatively. CSF plasma was compared with 50 healthy con-
trols (HC) matched for age and gender. Concentrations of NFL were determined in plasma using an in-house Simoa 
method and in CSF using a commercially available ELISA method.

Results  Plasma NFL was elevated in patients with iNPH compared to HC (iNPH: 45 (30–64) pg/mL; HC: 33 (26–50) 
(median; Q1–Q3), p = 0.029). Plasma and CSF NFL concentrations correlated in iNPH patients both pre- and postopera-
tively (r = 0.67 and 0.72, p < 0.001). We found only weak correlations between plasma or CSF NFL and clinical symp-
toms and no associations with outcome. A postoperative NFL increase was seen in CSF but not in plasma.

Conclusions  Plasma NFL is increased in iNPH patients and concentrations correlate with CSF NFL implying 
that plasma NFL can be used to assess evidence of axonal degeneration in iNPH. This finding opens a window 
for plasma samples to be used in future studies of other biomarkers in iNPH. NFL is probably not a very useful marker 
of symptomatology or for prediction of outcome in iNPH.
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Introduction
Idiopathic normal pressure hydrocephalus (iNPH) is a 
treatable neurological disease in the elderly, character-
ized by gait and balance disturbance, cognitive decline 
and urinary incontinence in combination with ventric-
ulomegaly [1]. The etiology remains largely unknown. 
Up to 80% of patients improve after shunt insertion 
[2, 3]. Accurate pre-operative identification of shunt 
responders is difficult, where the lack of reliable labora-
tory tests is one important factor, which probably con-
tributes to the fact that only 20–40% of patients with 
iNPH are treated [4]. Thus, better methods for diagno-
sis and prediction of outcome after shunt surgery are 
needed [2, 5].

Cerebrospinal fluid (CSF) neurofilament light chain 
protein (NFLCSF) is a biomarker reflecting neuronal 
death and axonal degeneration [6]. However, the patho-
physiological specificity for NFLCSF has proven rather 
unspecific for neurological disorders [7–9]. NFLCSF is 
elevated in patients with iNPH in comparison to neu-
rologically healthy individuals [7, 10–15] and a higher 
NFL is associated with more severe symptoms [11, 13] 
indicating axonal degeneration as part of the iNPH 
pathophysiology. After shunting, concentrations have 
been more contradictory and both increases [14], dec-
rements [16] and unchanged levels [11] in comparison 
to preoperative values have been reported in lumbar 
CSF.

It is now possible to determine NFL in plasma 
(NFLplasma), allowing monitoring of disease related 
axonal degeneration without a lumbar puncture [17, 
18]. NFLplasma has been tested successfully in other neu-
rological disorders, such as Alzheimer’s disease (AD) 
[19], parkinsonian disorders [20, 21] and HIV-associated 
dementia (HAD) [17] and could open the field to a less 
invasive biomarker sampling for diagnosis and moni-
toring of disease. A recent meta-analysis determined 
the pooled correlation coefficient between CSF and 
blood NFL r = 0.72 but with considerable heterogeneity 
between studies [22]. As the results varies between dis-
orders, there is a need to investigate the potential use of 
NFLplasma in patients with iNPH.

Aim
The aim of this study was (1) to explore if NFLplasma is 
elevated in patients with iNPH in comparison to healthy 
individuals; (2) to explore the association between 
NFLplasma and NFLCSF in iNPH patients pre- and post-
operatively; (3) to explore the associations between NFL 
concentrations in plasma and CSF and severity of symp-
tomatology and outcome after shunt surgery in iNPH.

Methods
Study population
Fifty patients (34 men and 16 women) aged 73; 
63–78 years (median; Q1–Q3)) consecutively diagnosed 
were treated with shunt insertion for iNPH according to 
the international guidelines [23] at the Hydrocephalus 
Unit, Sahlgrenska University Hospital between 2014 and 
2015 were included. All patients were clinically evaluated 
pre- and 6–9 months postoperatively by an experienced 
neurologist, a physiotherapist, and a neuropsychologist.

Symptoms and signs were assessed on the iNPH scale 
[24] comprising gait, balance, cognition and incontinence 
domains yielding a score of 0–100 points. Improvement 
was defined as ≥ 5 points increase in iNPH scale score 
postoperatively [24].

All patients received a Medtronic Strata ventriculo-
peritoneal shunt with an adjustable valve. All patients 
were operated on by frontal approach. All shunts were 
set to 1.5 opening pressure at time for the insertion. No 
adverse events were recorded. All shunts were checked 
for patency and were working at the time of follow-up.

Fifty healthy individuals from the H70-study popu-
lation based sample reported elsewhere (34 men and 
16 women aged 73; 71–80 (median; Q1–Q3)) were 
included as controls for NFLplasma [25–27]. All controls 
were non-demented individuals, defined as an MMSE of 
29 or above. Controls were matched with regard to age 
and gender. Demographic data at baseline are given in 
Table 1.

CSF and plasma sampling in iNPH and healthy controls
Lumbar CSF was obtained from the iNPH patients at the 
pre-op clinical work-up and at the post-op examination 
after median 9 months (Q1–Q3 8–11). Lumbar puncture 
(LP) was performed in the L3/L4 or L4/L5 interspace 
with the patient in a lateral recumbent position. The CSF 
opening pressure was measured. The CSF was collected 

Table 1  Demographic data of 50 iNPH patients at baseline and 
50 healthy controls (HC)

MMSE: Mini mental state examination; BMI: Body mass index; *p < 0.05; 
**p < 0.01; ***p < 0.001

iNPH HC

Sex (m/f ) 34/16 34/16ns

Age (median, Q1-Q3) 73 (69–78) 73 (71–80)ns

MMSE (median, Q1-Q3) 25 (21–28) 29 (29–30)***

BMI (median, Q1-Q3) 28 (25–31) 25 (23–27)**

Diabetes (yes/no) 28% (14/35) 10% (5/45)*

Hypertension (yes/no) 60% (30/19) 38% (19/31)*

Symptom duration, months 36 (24–66)

Time to follow-up, months 9 (8–11)
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in polypropylene tubes, centrifuged, aliquoted, and ana-
lyzed according to standardized procedures.

Blood samples were collected in EDTA tubes from the 
iNPH patients at the time for LP both pre- and postop-
eratively and for controls in connection with the clinical 
study evaluation [27]. Plasma was processed, aliquoted 
and stored at − 80  °C until analyzed according to stand-
ardized procedures.

NFL quantification in CSF and plasma
The concentration of NFLCSF was measured by the NF-
Light ELISA as described by the manufacturer (UmanDi-
agnostics, Umeå, Sweden).

The concentration of NFLplasma was measured using the 
in-house Simoa NFL assay which has been described in 
detail elsewhere [28]. Briefly, paramagnetic carboxylated 
beads (Quanterix Corp, Boston, MA, USA) was coated 
with a mouse anti-neurofilament light antibody (UD1, 
UmanDiagnostics, Umeå, Sweden) and incubated 35 min 
with sample and a biotinylated mouse anti-neurofilament 
light antibody (UD2, UmanDiagnostics) in a Simoa HD-1 
instrument (Quanterix). The bead-conjugated immuno-
complex was thoroughly washed before incubation with 
streptavidin-conjugated β-galactosidase (Quanterix). 
After additional washes, resorufin β-d-galactopyranoside 
(Quanterix) was added and the immunocomplex was 
applied to a multiwell array designed to enable imaging 
of every single bead. The average number of enzymes per 
bead (AEB) of samples was interpolated onto the calibra-
tor curve constructed by AEB measurements on bovine 
NFL (UmanDiagnostics) serially diluted in assay diluent. 
The average inter-assay CV was 7.9%CV for QC1 and 
13.4%CV for QC2. The limit of detection (LOD), deter-
mined as the mean blank signal + 3 SD for the Simoa NFL 
assay was 0.3 pg/mL, and the lower limit of quantification 
(LLOQ) determined as the mean blank signal + 10 SD 
was 2.7 pg/mL when compensated for a four-fold sample 
dilution.

Statistics
Non-parametric methods were used for all analyses 
due to markedly skewed distributions of concentrations 
in CSF and plasma and because of the ordinal level of 
measurement used in some of the domains of the iNPH 
scale. The Chi-square test was used to compare frequen-
cies across groups. When analysing the relation between 
paired variables, the Related-Samples Wilcoxon Signed 
Rank Test was used. For unpaired variables, Mann–
Whitney U-test was performed. For associations between 
two independent variables, the Spearman Rank Order 
Correlation test was used (rs). The level of significance 
chosen was 0.05, if not otherwise stated. No correction 
for the mass-significance effect was made. Statistical 

analyses were performed using IBM® SPSS® Statistics for 
Windows version 24.

Results
Thirty-six (72%) patients improved after shunt surgery. 
The total iNPH scale score increased from 51; 37–72 
(median; Q1–Q3) to 70; 53–83 (p ≤ 0.001) and increased 
scores were seen in all domains (Table 2).

Preoperatively, NFLplasma in iNPH patients was 45 (30–
64) pg/mL (median; Q1–Q3) compared to 33 (26–50) in 
controls (p = 0.029) (Fig. 1). NFLCSF was 1415 (985–2063) 
ng/L in iNPH-patients. Seventeen of the 50 patients 
(34%) had elevated NFLCSF concentrations compared to 
the laboratory reference value < 1850 ng/L.

Postoperatively, NFLplasma remained unchanged (43 
(28–55) pg/mL, p = 0.54) whereas NFLCSF increased 
(1955 (1500–2083), p < 0.001). This increase was seen 
in both patients with normal, or increased, NFLCSF 
preoperatively.

NFLplasma correlated with NFLCSF both pre- and post-
operatively (iNPH patients); rs = 0.629 (p =  < 0.001) and 
rs = 0.722 (p =  < 0.0001) respectively (Fig. 2).

Preoperatively, a higher NFLCSF correlated weakly 
with a lower score on the total iNPH scale (rs = − 0.31, 
p = 0.029) as well as on the domains of gait (rs = − 0.33, 
p = 0.020), balance (rs = − 0.36, p = 0.010) and neuropsy-
chology (rs = − 0.36, p = 0.012). A higher NFLplasma corre-
lated weakly with a lower score on the total iNPH scale 
(rs = − 0.33, p = 0.030) as well as on the neuropsychology 
domain (rs = − 0.35, p = 0.022). Postoperatively, no signifi-
cant correlations were seen, except between NFLCSF and 
the balance domain (rs = − 0.39, p = 0.01). Neither did the 
clinical improvement correlate to concentration of NFL 
in plasma or in CSF, pre- or postoperatively. Patients 
who improved after shunt surgery did not differ from 
those who did not improve in baseline concentrations of 
NFLCSF or NFLplasma (p = 0.12 and 0.72 respectively).

NFLCSF or NFL plasma was not correlated with age 
in iNPH patients (rs = 0.28, p = 0.053 and rs = 0.22, 

Table 2  iNPH scale score (domains and total) in 50 iNPH 
patients, pre- and postoperatively (median, Q1-Q3 range). 
Outcome = postoperative change in iNPH scale score

**p ≤ 0.01; ***p ≤ 0.001

Preoperatively Postoperatively Outcome
n = 50 n = 50

Gait 42 (35–81) 71 (43–90) 10 (0–26) ***

Balance 67 (50–83) 67 (50–83) 0 (0–17)**

Neuropsychology 50 (23–67) 60 (32–75) 8 (0–18)***

Continence 40 (20–65) 80 (40–100) 20 (0–40)***

Total 51 (38–73) 70 (53–83) 11 (4–22)***
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p = 0.15 respectively), while there was a weak correla-
tion between NFLplasma and age in controls (rs = 0.39, 
p = 0.006). There was no correlation between NFLCSF 
or NFLplasma and disease duration (iNPH patients) 

(rs = 0.13, p = 0.38 and rs = 0.10 p = 0.38, p = 0.54 
respectively).
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Discussion
We report, for the first time, an elevation of plasma NFL 
in patients with iNPH in comparison with healthy indi-
viduals matched for age and gender and that CSF NFL 
concentrations are correlated with plasma concentrations 
both pre- and postoperatively. We found only weak cor-
relations between plasma or CSF NFL and measures of 
clinical symptoms. A postoperative increase of NFL was 
seen in CSF but not in plasma.

Elevated NFL in plasma and CSF in iNPH patients
The elevated concentrations of NFL in plasma in com-
parison with healthy controls reported here corroborate 
earlier studies using CSF samples [10–16]. Neurofilament 
protein is the dominant protein of the axonal skeleton 
that is comprised of three subunits; a light, a medium and 
a heavy chain that refers to differences in their C-termi-
nus [29]. The light subunit NFL is used as a biomarker for 
neuroaxonal damage and is elevated in a large number of 
neurological diseases [9].

Even if most studies report CSF NFL to be elevated in 
iNPH in comparison to healthy controls, the elevation 
seen in the clinical setting is normally mild-moderate and 
according to our experience not necessarily above labora-
tory reference value. In our material, 34% of the patients 
had concentrations above this reference value which is in 
accordance with this notion. In contrast, markedly ele-
vated levels of NFL are often seen in some of the clinical 
mimics of iNPH, such as atypical parkinsonian disorders, 
Alzheimer’s disease and frontotemporal dementia [9, 30]. 
Thus, a marked elevation of NFL in CSF should inform 
the clinician to consider potential differential diagnoses 
or comorbidities which might have impact on prognosis 
and treatment considerations. The mild elevation of NFL 
in iNPH is consistent with a less aggressive deterioration 
and might represent a less active destruction of axons 
in iNPH. This notion is also coherent with the clinical 
reversibility and the subcortical nature of the disease 
and is supported by recent resting-state functional MRI 
findings indicating partially reversible plasticity func-
tional mechanisms in iNPH as well as the postoperative 
improvement in periventricular white matter perfusion 
seen in shunt responders [31, 32].

Correlation of NFL in plasma and CSF
Plasma NFL concentrations were significantly corre-
lated with CSF NFL concentrations both pre- and post-
operatively with a strength of associations similar to 
that in other neurological disorders [22] supporting the 
notion that plasma concentrations of NFL reflect CSF 
concentrations also in iNPH. This relationship is not 
self-evident: the altered CSF dynamics in iNPH as well 

as the shunt treatment, adding a new drainage route of 
CSF from the ventricles to the peritoneal cavity, or to 
the atrium of the heart, can both possibly affect the CSF/
plasma protein relationship why this relationship needs 
to be confirmed in studies like this. The NFL efflux routes 
and the CSF-plasma clearance mechanisms are largely 
unknown but a recent report indicates that glymphatic 
and meningeal lymphatic clearance functions may be 
involved in both individual- and disease specific man-
ners with daytime variation, suggesting that CSF clear-
ance is more dominant for NFL than for brain Amyloid 
beta proteins being excreted by different routes [33]. The 
unchanged magnitude of the correlation between CSF 
and plasma NFL even after shunt surgery strengthens the 
clinical value of plasma measurements, and further indi-
cates that the CSF-plasma clearance is preserved after 
insertion of a shunt and that the direction of absorp-
tion of NFL into the blood plays a minor roll. This study 
supports that NFL, and most probably other biomarker 
proteins, can be analyzed in blood for diagnostic or prog-
nostic purposes, to monitor disease or to evaluate core 
pathophysiological mechanisms in iNPH. This also opens 
a novel field of more non-invasive sampling of biomark-
ers for diagnostic purposes available also outside highly 
specialized centers in the future.

Correlation to clinical parameters
We found only weak associations between NFL in CSF 
and plasma and clinical symptoms and no association 
to outcome after shunt surgery, age or disease duration. 
A previous study including patients with idiopathic and 
secondary NPH found that increased NFLCSF correlated 
with worse gait, balance and cognitive performance with 
stronger correlations for some of the clinical measures 
possibly related to the inclusion of secondary cases [16]. 
Recently we found weak correlations between higher CSF 
NFL and worse MMSE performances preoperatively as 
well as postoperatively [34]. These findings are replicated 
in this study, for the total iNPH scale score as well as for 
the subdomains of gait, balance, and neuropsychology. 
The neuropsychological tests included in the iNPH scale 
are selected to detect iNPH-specific cognitive decline, 
whereas MMSE is a rather crude measurement of cogni-
tive function, probably more prone to capture also other 
causes of cognitive decline such as comorbid AD pathol-
ogy or subcortical vascular dementia. We cannot rule out 
though, that in some iNPH patients such a comorbidity 
signals increased NFL concentrations and explain worse 
cognitive performance on the iNPH scale, a view sup-
ported by the similar correlations between MMSE and 
phosphorylated tau found in the same study [34]. How-
ever, correlations of similar strength also for gait and 
balance as well as for the total iNPH scale score lends 
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support to the view that NFL elevation in some way, 
albeit weakly, is related to development of clinical symp-
toms in iNPH.

We found no association between NFL and age in 
patients with iNPH, in controls however, there was a 
weak correlation between NFLplasma and age. These find-
ings are consistent with other studies, where there seems 
to be a clearer age-related increase in NFL in healthy 
individuals, whereas there are more divergent results in 
cohorts with neurological disease [9]. In the aggregate, 
our study and previous reports indicate that NFL cannot 
be used as a sensitive marker of clinical symptoms, nor 
be used to predict outcome after shunting in iNPH.

Changes induced by shunt surgery
In this study, NFLCSF increased postoperatively while 
NFLplasma did not. Studies describing postoperative 
changes of NFLCSF have been contradictory and both 
increases [10, 14] decrements [16] and unchanged levels 
[11] in lumbar CSF in comparison to preoperative values 
have been reported. Diverging data has been attributed 
to different time span of postoperative sampling [35] and 
in a recent study of longitudinal changes, a temporary 
increase in CSF NFL induced by shunt surgery that was 
normalized after 6–9 months was found [36]. The post-
operative sampling in our study was performed median 
9  months postoperatively why our results contradict 
those of Lukkarinen et al. This discrepancy deserves fur-
ther study.

Strengths and limitations
We consider the sample of iNPH patients representative 
and comparable to earlier studies examining the con-
centration of NFL in CSF in patients with iNPH in com-
parison to controls. Patients were diagnosed according 
to diagnostic guidelines and well characterized regarding 
clinical symptoms and outcome. Controls were recruited 
from a population-based sample and matched for age and 
gender. Limitations include the lack of CSF in controls 
which limits the possibility to compare CSF concentra-
tions of NFL between patients and healthy individuals, 
but this has been done in numerous previous studies 
[37, 38]. Further, we could not investigate the correla-
tion between NFL in CSF and plasma in healthy controls, 
however, we find no reason to suspect that our healthy 
individuals should differ from those in other studies. 
Our sample of patients and controls was rather small, 
introducing a risk of type II error. We did not make any 
corrections for multiple comparisons to reduce risk of 
false negative findings and since we consider this study 
exploratory. The possibility that the shunt surgery might 
have some long-lasting effects on CSF and plasma NFL 

concentrations also call for additional follow-up samples 
in this cohort, e.g., 1- or 2-years post-surgery.

NFLCSF was determined using a standardized ELISA 
and routine samples were used. Determining the con-
centration of NFLCSF on the Simoa might increase the 
correlation [22]. On the other hand, the methodology 
used herein mirrors the standard clinical setting, where 
NFLCSF is determined by ELISA and NFLplasma by Simoa 
and makes it easier to transfer results to everyday rou-
tine. We used standard CSF samples in combination with 
stored plasma samples. Even though this could affect the 
results, NFL has shown high stability under different pre-
analytical conditions, such as contamination, repeated 
freeze–thaw, delayed processing or long-term storing 
[39].

Conclusions
Plasma NFL is increased in iNPH patients compared with 
healthy controls and concentrations correlate with CSF 
NFL, implying that plasma NFL can be used to assess evi-
dence of axonal degeneration in iNPH. This finding sup-
ports the view that plasma NFL concentrations reflect 
CSF concentrations, which opens a window for plasma 
samples to be used in future studies of other biomarkers 
in iNPH. NFL is however probably not a clinically use-
ful marker for diagnosis or for prediction of outcome in 
iNPH.
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